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ABSTRACT
In most distributed systems, naming of nodes for low-level com-
munication leverages topological location (such as node addresses)
and is independent of any application. In this paper, we investigate
an emerging class of distributed systems where low-level commu-
nication does not rely on network topological location. Rather,
low-level communication is based on attributes that are external
to the network topology and relevant to the application. When
combined with dense deployment of nodes, this kind of named
data enables in-network processing for data aggregation, collabo-
rative signal processing, and similar problems. These approaches
are essential for emerging applications such as sensor networks
where resources such as bandwidth and energy are limited. This
paper is the first description of the software architecture that sup-
ports named data and in-network processing in an operational,
multi-application sensor-network. We show that approaches such
as in-network aggregation and nested queries can significantly af-
fect network traffic. In one experiment aggregation reduces traffic
by up to 42% and nested queries reduce loss rates by 30%. Al-
though aggregation has been previously studied in simulation, this
paper demonstrates nested queries as another form of in-network
processing, and it presents the first evaluation of these approaches
over an operational testbed.

1. INTRODUCTION
In most distributed systems, naming of nodes for low-level com-
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munication leverages topological location (such as node addresses)
and is independent of any application. Typically, higher-level,
location-independent naming and communication is built upon these
low-level communication primitives using one or more levels of
(possibly distributed) binding services that map higher-level names
to topological names and sometimes consider application-specific
requirements.

An example of this is the Internet where IP addresses provide
the low-level names suitable for routing. IP addresses are assigned
topologically: the addresses for nodes that are topologically prox-
imate are usually drawn from the same address prefix [18]. (By
topology, we mean logical connectivity as distinct from physical
geography.) This topological assignment is essential for scaling
the routing system and was carried forward into IPv6 [30]. DNS
provides a text-based hierarchical node naming system [26] that
is implemented using IP. Above this system, the web and search
engines provide a document and object naming system, and con-
tent distribution networks add geographic or application-level con-
straints. As an alternative, systems such as Jini [35] and INS [1]
layer different approaches for resource discovery above IP for net-
works of devices.

In this paper, we investigate an emerging class of distributed
systems where low-level communication does not rely on network
topological location. Rather, low-level communication is based
on names that are external to the network topology and relevant to
the application; names can be based on capabilities such as sensor
types or geographic location. Such an approach to naming al-
lows two kinds of efficiencies. First, it eliminates the overhead
of communication required for resolving name bindings. Sec-
ond, because data is now self-identifying, it enables activation of
application-specific processing inside the network, allowing data
reduction near where data is generated.

These two benefits do not apply to the Internet as a whole,
where, by comparison, bandwidth is plentiful, delay is low, and
throughput (router processing capability) is the primary constraint.
Technology trends suggest, however, that these conditions are re-
versed in wireless sensor networks. Sensor networks are predi-
cated on the assumption that it will be feasible to have small form-
factor devices containing significant memory resources, process-
ing capabilities, and low-power wireless communication, in addi-
tion to several on-board sensors. In sensor networks processing



time per bit communicated is plentiful (CPUs are fast and band-
widths low), but bandwidth is dear. For example, in one scenario
Pottie and Kaiser observe that 3000 instructions could be executed
for the same energy cost of sending a bit 100m by radio [29]. This
environment encourages the use of computation to reduce commu-
nication. In that context, fewer levels of naming indirection and
the use of in-network, application-specific message processing (as
opposed to opaque packet forwarding) are essential to the design
of sensor networks.

Our thesis, then, is that the resource constraints of wireless sen-
sor networks can be better met by an attribute-based naming sys-
tem with an external frame of reference than by traditional ap-
proaches. There have been many attribute-based naming schemes,
but most build over an underlying topological naming scheme
such as IP [28, 10, 6, 38, 4, 27, 1, 20, 22]. Multiple layers of nam-
ing may not be a bottleneck with a few or even tens of nodes, but
the overhead becomes unreasonable with hundreds or thousands
of nodes that vary in availability (due to movement and failures).
However, constrained, application-specific domains such as sen-
sor networks can profit by eliminating multiple layers and naming
and routing data directly in application-level terms. Efficient at-
tribute naming is based on external frames of reference such as
pre-defined attributes and geography. Pre-defined sensor types re-
duce the levels of run-time binding and geographic-aided routing
reduces resource consumption.

In addition to attribute-based naming, application-specific, in-
network processing is essential in resource-constrained sensor net-
works. As suggested by the above trade-off between computa-
tion and communication, application-specific caching, aggrega-
tion, and collaborative signal processing should occur as close as
possible to where the data is collected. Such processing depends
on attribute-identified data to trigger application-specific filters,
pre-defined attributes and data types to allow pre-deployment of
these filters, and hop-by-hop processing of the data. This kind of
processing is similar to Active Networks [34], but differs by op-
erating in the constrained, bandwidth-poor environment of sensor
networks where an integrated, application-specific solution is ap-
propriate.

As an illustration of attribute-based naming and in-network pro-
cessing in a sensor network, consider a wireless monitoring sys-
tem with a mixture of light or motion sensors (constantly vigilant
at low-power), and a few higher-power and higher-bandwidth sen-
sors such as microphones or cameras. To conserve energy and
bandwidth the audio sensors would be off (or not recording) at
most times, except when triggered by less expensive light sen-
sors. Instead this computation can be distributed throughout the
network. Queries (user requests) are labeled with sensor type (au-
dio or light) known to the system at design time. Queries diffuse
through the network to be handled by nodes with matching sen-
sors in the relevant geographic region. The application will hear
from whatever relevant sensors respond. Moreover, the decision
of one sensor triggering another can be moved into the network
to be handled directly between the light and audio sensors. The
alternative Internet-based architecture would have a central direc-
tory of active sensors and a central application that interrogates
this database, monitors specific sensors, and then triggers others.
Our goal is to eliminate the communication costs of maintaining
this central information to provide more robust and long-lived net-
works in spite of changing communications, moving nodes, and
limited battery power. (We explore exactly how these approaches

work in Section 5 and quantify potential savings in Section 6.)
In this paper, we demonstrate that there exists a simple archi-

tecture that uses topology-independent naming for low-level com-
munications to achieve flexible, yet highly energy efficient appli-
cation designs. The key contributions of this work are therefore:

� Identifying the building-blocks of this architecture, specifi-
cally an attribute-based naming scheme with flexible match-
ing rules grounded in a shared framework of attributes (such
as sensor types and geography).

� Showing how this approach to naming enables application-
specific, in-network processing such as localized data aggre-
gation, and to quantify these benefits in a running system.

In previous work [23], we have discussed the low-level commu-
nication primitives that constitute directed diffusion. This work
focused on understanding the design space of the network proto-
cols underlying directed diffusion. It also evaluated their perfor-
mance through simulation, finding that scalability is good as num-
bers of nodes and traffic increases. However, this work did not
develop the software architecture necessary for realizing attributes
and in-network processing in an operational system (for example,
it employed a simplified attribute scheme and hard-coded aggrega-
tion methods). In addition, simulations necessitate approximating
environmental effects such as radio propagation, and many param-
eters of those simulations were not set to match the sensor net-
working hardware that is only now becoming available. By con-
trast, this paper evaluates the design questions concerning naming
and in-network processing encountered in deploying a sensor net-
work, and it presents the first experimental results of data diffu-
sion in a testbed (reflecting the details of an implementation such
as non-idealized radios, propagation, MAC protocols, etc.).

Numerous early systems have developed attribute-based nam-
ing systems, for general use [28, 10, 6], as an approach to soft-
ware design [9, 4, 27, 17, 25] and for sensor networks [1, 22]. Our
work is unique in that it replaces rather than augments the underly-
ing networking routing layers, and that it provides matching rules
that allow efficient implementation and yet are expressive enough
to cover a wide range of applications, and provides in-network
processing.

2. RELATED WORK
Our work builds on prior work in attribute-based naming, in-

network processing, and sensor networks.

2.1 Attribute-based naming systems
There has been a large amount of work on attribute-based nam-

ing, both for general purpose use over Internet-style networks, for
special domains (such as the web), and as an internal structuring
mechanism for services.

Research and industry have developed numerous attribute-based
naming systems layered on top of general-purpose networks. Uni-
vers and yellow-pages naming at the University of Arizona [6, 28]
were designed to provide service discovery for groups of comput-
ers (for example, print to an unloaded postscript-capable printer).
Like our work, they include attributes and operators, but they build
over standard Internet protocols for communications. Commercial
attribute-based naming systems such as X.500 [10] and LDAP [38]
also operate over Internet or Internet-like routing and provide a



primarily hierarchical organization. Dependence on IP-level ad-
dressing and routing limits adds substantial overhead when ap-
plying these systems to highly resource-constrained environments
such as sensor networks. (For example, some approaches to ser-
vice location for smart spaces require services for IP assignment,
IP-level routing, host name lookup, and service registration and
lookup.) With end-to-end processing only, these systems also do
not provide in-network processing.

As an alternative to providing attribute-based naming for end-
user use, several systems have proposed attribute-based communi-
cations for structuring distributed systems. Linda proposed struc-
turing distributed programs using several CPUs around an attribute-
indexed common memory called a tuple space [9]. For the S/Net
implementation this was the basic communication mechanism, but
proposed implementations assume uniform and rapid communi-
cations between all processors. Later systems such as ISIS [4]
and the Information Bus [27] provide a “publish and subscribe”
approach where information providers publish information and
clients subscribe to attribute-specified subsets of that information.
These systems are designed to be robust to failure, but again as-
sume reasonably fast, plentiful, and expensive communications
between nodes. These approaches are not directly applicable to
resource-constrained sensor networks. They do not use application-
specific, in-network processing since all processes are reasonably
close to each other; when they do use processing (such as at a
wide-area gateway) it is manually configured.

More specific still is work that proposes attribute-based primi-
tives as solutions to specific problems. SRM first suggested us-
ing named data as the fundamental data unit for reliable mul-
ticast communication, and it demonstrated this approach with a
distributed whiteboard [17]. Our work is inspired by these ap-
proaches, but it differs by providing a wider range of matching
operators (rather than just equality), adding in-network processing
to leverage CPU-communications trade-offs for sensor networks,
and operating directly over low-level (hop-by-hop) communica-
tions protocols instead of the Internet multicast infrastructure.

2.2 In-network processing
Recent work in active networks [34] and active services [2]

has examined ways to provide in-network processing for the In-
ternet. Sample applications include information transcoding, net-
work monitoring, and caching. This work is built over an Internet-
like infrastructure, often augmented with an extended run-time en-
vironment, and assumes nodes are individually addressable. We
instead build directly over hop-by-hop communications primitives
and identify data instead of nodes. Our work differs from active
services in that we assume that communications costs between
nodes vary greatly while currently proposed active services as-
sume roughly equivalent distances between all service-providing
nodes. We differ from active networks primarily in the target
domain: we target sensor networks where bandwidth is limited,
energy is expensive, and compute power is comparatively plenti-
ful and inexpensive. Instead, active networks typically considers
Internet-like domains where bandwidth is plentiful, the ratio of
compute power to bandwidth is much lower, and energy is not an
issue. All of these approaches distribute application-specific code
throughout the network, raising questions about code safety and
portability. These problems are not central to some sensor net-
works (such as those that are devoted to a single application), but
more complex networks would benefit from active-networks-style

execution environments to support in-place upgradability.
Recent work on adaptive web caching [25] and peer-to-peer file

sharing systems such as Freenet [12] explore application-specific,
hop-by-hop processing. Unlike active networks and our work,
these approaches emphasize protocols designed for a particular
application. In addition, our work runs directly over hop-by-hop
communication rather than over a virtual network layered over the
Internet.

2.3 Sensor-network-specific systems
Sensor networking research has seen increasing activity in the

last few years, with advances in sensor node and radio hardware [33,
29]. This work has been instrumental in clarifying the trade-off
between computation and communication and the need for in-
network processing. Our focus on in-network processing is moti-
vated by this work. This work is however based on topographically-
addressed sensor nodes; the primary difference in our work is the
use of attribute-based naming for structure and data diffusion for
communication.

Internet ad hoc routing (Broch et al. survey several protocols [7]
such as DSR and AODV) can also be used in sensor networks.
Since ad hoc routing recreates IP-style addressing, it would re-
quire some kind of directory service to locate sensors, unlike our
approach where they are named by attributes. Ad hoc routing does
not support in-network processing.

Jini is an example of a resource discovery system built over
Internet protocols [35]. It provides a directory service and uses
Java to distribute processing to user nodes, making it well suited
to a local-area network with high bandwidth and multicast. By
contrast, we distribute the directory across the network and al-
low application-specific processing at intermediate system nodes,
addressing problems of resource-constrained, multi-hop wireless
networks. The Ninja Service Discovery Service [15] locates XML-
named objects through a network of collaborating servers but again
targets high bandwidth local-area resources.

The Piconet work has presented fundamental advances in energy-
conserving network communications for networks of devices [3].
Their work focuses on static hierarchies of networked devices,
concentrators, and hosts. While similar to our tiered architec-
ture with full and micro-diffusion, they do not consider attribute-
named data or dynamic in-network processing.

SPIN evaluates several variants of flooding for wireless sensor
networks [20]. Data in SPIN is identified by application-specific
metadata that appears to assume individual sensors are address-
able. We instead use attributes to name data alone; globally unique
identifiers are not used. SPIN does not consider application-specific
in-network processing.

The Intentional Naming System is an attribute-based name sys-
tem operating in an overlay network over the Internet [1]. Its use
of attributes as a structuring mechanism and a method to cope with
dynamically locating devices is similar to our approach in motiva-
tion and mechanism. The primary difference is that we assume
that attribute-based communication (data diffusion) is the basic
communications primitive (above hop-by-hop messaging), while
they construct an overlay network over an IP-based Internet. Ar-
chitecturally this implies that we distribute name matching across
many small communications nodes while they manage names at a
few resolvers that cooperatively manage parts of the namespace.
Finally, the details of matching are different in the two systems.
Their work provides a sophisticated hierarchical attribute match-



ing procedure. Our approach is much more modest by comparison
(targeting smaller embedded devices) but adds comparative oper-
ators in addition to equality.

LEACH analyzes the performance of cluster-based routing mech-
anism with in-network data compression [19]. They emphasize
how intermediate-range communication via cluster-heads and how
compression can reduce energy consumption. Their in-network
compression is one example of the kind of in-network processing
that we would like to support. They do not specify how flows and
opportunities for aggregation would be activated, while our work
focuses on the naming mechanisms that allow such activity.

DataSpace describes an attribute based naming mechanism for
querying physical objects that produce and store local data [22].
The DataSpace is divided into smaller administrative and logical
datacubes, which are logically grouped into dataflocks. Dataflocks
are addressed at the network level through IPv6 multicast addresses
that correspond to their geographic coordinates, and their values
for certain attributes that serve as network indices. Query results
may involve aggregation of more specific queries addressed to
sub-datacubes. At a high-level their naming approach is similar
to ours, but instead of mapping attributes and geometry to a very
large number of multicast groups we route directly on attributes
themselves without this indirection. In addition, they do not ex-
plore in-network processing.

The COUGAR device database system proposes distributing
database queries across a sensor network as opposed to moving all
data to a central site [5]. Sensor data is represented as an Abstract
Data Type attribute, the public interface to which corresponds to
specific signal processing functions supported by a sensor type.
They then perform joins or aggregation in the network as speci-
fied by a centrally computed query plan. Their work is common
with ours in its emphasis on in-network processing, and our study
of nested queries (Section 5.2) was inspired by their work. The
primary difference between their work in ours is how placement
of in-network processing is determined. We emphasize the use of
filters and nested queries to enable either ad-hoc or sensor-specific
placement of in-network processing, while COUGAR centrally
translates the query and assigns processing to the distributed sys-
tem, incurring overhead to centrally collect network information
for query optimization.

Declarative Routing from MIT’s Lincoln Labs is closest to our
work [14]. The publish/subscribe-oriented API we use was de-
fined in collaboration with them [13] and they have developed
an independent implementation. The primary difference between
their work and ours is our focus on in-network processing. We
evaluate their work more completely in Section 4.2.

3. ARCHITECTURE
Our communications architecture is based on three components:

directed diffusion, matching rules, and filters. Directed diffusion
is used to disseminate information in the distributed system. Data
is managed as a list of attribute-value-operation tuples. Matching
rules identify when data has arrived at its destination, or if inter-
mediate filters should process the data. This approach to naming
comes together to provide an external framework relevant to the
application. These components balance the generic services of
diffusion and matching rules with application-provided attributes
and filters. We next describe each of these components.

3.1 Directed Diffusion
Directed diffusion is a data communication mechanism for sen-

sor networks [23]. Data sources and sinks use attributes to identify
what information they provide or are interested in. The goal of
directed diffusion is to establish efficient n-way communication
between one or more sources and sinks. Directed diffusion is a
data-centric communication paradigm that is quite different from
host-based communication in traditional networks. To describe
the elements of diffusion, we take the simple example of a sensor
network designed for tracking animals in a wilderness refuge.

Suppose that a user in this network would like to track the
movement of animals in some remote sub-region of the park. In
directed diffusion, this tracking task represents an interest. An
interest is a list of attribute-value pairs that describe a task us-
ing some task-specific naming scheme (we describe the details of
these attributes in the next section). Intuitively, attributes describe
the data that is desired by specifying sensor types and possibly
some geographic region. They are then used to identify and con-
tact all relevant sensors. We use the term sink to denote the node
that originates an interest and therefore is the destination of data.

The interest is propagated from neighbor-to-neighbor towards
sensor nodes in the specified region. A key feature of directed dif-
fusion is that every sensor node is task-aware—by this we mean
that nodes store and interpret interests, rather than simply forward-
ing them along. In our example, each sensor node that receives an
interest remembers which neighbor or neighbors sent it that in-
terest. To each such neighbor, it sets up a gradient. A gradient
represents both the direction towards which data matching an in-
terest flows, and the status of that demand (whether it is active or
inactive and possibly the desired update rate). After setting up a
gradient, the sensor node redistributes the interest to its neighbors.
When the node can infer where potential sources might be (for ex-
ample, from geographic information or existing similar gradients),
the interest can be forwarded to a subset of neighbors. Otherwise,
it will simply broadcast the interest to all of its neighbors.

When a sensor node that matches the interest is found, the appli-
cation activates its local sensors to begin collecting data. (Prior to
activation we expect the node’s sensors would be in a low-power
mode). The sensor node then generates data messages matching
the interest. In directed diffusion, data is also represented using
an attribute-based naming scheme. A sensor node that generates
such an event description is termed a source.

Data is cached at intermediate nodes as it propagates toward
sinks. Cached data is used for several purposes at different levels
of diffusion. The core diffusion mechanism uses the cache to sup-
press duplicate messages and prevent loops, and it can be used to
preferentially forward interests. (Since the diffusion core is pri-
marily interested in an exact match, as an optimization, hashes
of attributes can be computed and compared rather than complete
data.) Cached data is also used for application-specific, in-network
processing. For example, data from detections of a single object
by different sensors may be merged to a single response based on
sensor-specific criteria.

The initial data message from the source is marked as explora-
tory and is sent to all neighbors for which it has matching gra-
dients. If the sink has multiple neighbors, it chooses to receive
subsequent data messages for the same interest from a preferred
neighbor (for example, the one which delivered the first copy of
the data message). To do this, the sink reinforces the preferred
neighbor, which, in turn reinforces its preferred upstream neigh-
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Figure 1: A simplified schematic for directed diffusion.

bor, and so on. Finally, if a node on this preferred path fails, sen-
sor nodes can attempt to locally repair the failed path. The sink
may also negatively reinforce its current preferred neighbor if an-
other neighbor delivers better (lower latency) sensor data. This
negative reinforcement propagates neighbor-to-neighbor, remov-
ing gradients and tearing down and existing path if it is no longer
needed [23]. Negative reinforcements suppress loops or duplicate
paths that may arise due to network dynamics.

After the initial exploratory data message, subsequent messages
are sent only on reinforced paths. Periodically the source sends
additional exploratory data messages to adjust gradients in the
case of network changes (due to node failure, energy depletion,
or mobility), temporary network partitions, or to recover from lost
exploratory messages. Recovery from data loss is currently left
to the application. While simple applications with transient data
(such as sensors that report their state periodically) need no addi-
tional recovery mechanism, we are also developing retransmission
scheme for applications that transfer large, persistent data objects.

Even this simplified description points out several key features
of diffusion, and how it differs from traditional networking. First,
diffusion is data-centric; all communication in a diffusion-based
sensor network uses interests to specify named data. Second, all
communication in diffusion is neighbor-to-neighbor or hop-by-
hop, unlike traditional data networks with end-to-end communi-
cation. Every node is an “end” in a sensor network. A corollary to
this previous observation is that there are no “routers” in a sensor
network. Each sensor node can interpret data and interest mes-
sages. This design choice is justified by the task-specificity of
sensor networks. Sensor networks are not general-purpose com-
munication networks. Third, nodes do not need to have globally
unique identifiers or globally unique addresses for regular opera-
tion. Nodes, however, do need to distinguish between neighbors.
Fourth, because individual nodes can cache, aggregate, and more
generally, process messages, it is possible to perform coordinated
sensing close to the sensed phenomena. It is also possible to per-
form in-network data reduction, thereby resulting in significant
energy savings. Finally, although our example describes a partic-
ular usage of the directed diffusion paradigm (a query-response
type usage, see Figure 1), the paradigm itself is more general than
that; we discuss several other example applications in Section 5.

3.2 Attribute Tuples and Matching Rules
Diffusion messages and application interests are composed of

attribute-value-operation tuples. Attributes are identified by unique

one-way match:
given two attribute sets A and B
for each attribute a in A where a:op is a formal f

matched = false
for each attribute b in B where a:key = b:key and b:op is an actual

if a:val compares with b:val using a:op, then matched = true
if not matched then return false (no match)

g
return true (successful one-way match)

Figure 2: Our one-way matching algorithm.

keys drawn from a central authority. (In practice we implement
these as simple 32-bit numbers and assume out-of-band coordi-
nation of their values, just as Internet protocol numbers are as-
signed.) Attributes implicitly have a data format (integers and
floating point values of different sizes, strings, and uninterpreted
binary data are currently supported).

The operation field defines how data messages and interests in-
teract. Operations are the usual binary comparisons (EQ, NE, LE,
GT, LE, GE, corresponding to equality, inequality, less than, etc.),
“EQ ANY” (which matches anything), and IS. “IS” allows users
to specify an actual (literal or bound) value, while all the other op-
erations specify formal (a comparison or unbound) parameters for
comparison. A one-way match compares all formal parameters of
one attribute set against the actuals of the others (Figure 2). Any
formal parameter that is missing a matching actual in the other
attribute set causes the one-way match to fail (for example, “con-
fidence GT 0.5” must have an actual such as “confidence IS 0.7”
and would not match “confidence IS 0.3”, “confidence LT 0.7”,
or “confidence GT 0.7”). Two sets of attributes have a complete
match if one-way matches succeed in both directions. In other
words, attribute sets A and B match if the one-way match algo-
rithm succeeds from both A to B and B to A.

This matching style is similar to the rules used in other attribute-
based languages (for example, Linda [9] and INS [1]), but we add
two-way matching and a range of operators in addition to equality.
When multiple attributes and operators are present they are effec-
tively “anded” together; all formals must be satisfied for a match
to be successful. This approach strikes a balance between ease of
implementation and flexibility. The simple bounded set of opera-
tors can be implemented in tens of lines of code and yet supports,
for example, rectangular regions.



To see how diffusion and attribute matching interact, we con-
tinue the example from Section 3.1 where a user asks a sensor
network to track four-legged animals. The user’s query translates
into an interest with the attributes (type EQ four-legged-animal-
search, interval IS 20ms, duration IS 10 seconds, x GE –100, x LE
200, y GE 100, y LE 400). Also, an implicit “class IS interest”
attribute is added to identify this message as an interest (as op-
posed to data). This interest specifies five conditions: detection of
animals in a particular region specified by a rectangle. It also pro-
vides information about how frequently data should be returned
and how long the query should last.

Sensors in the network are programmed with animal search rou-
tines (either by pre-programming at deployment time or by down-
loading mobile code). Such sensors would watch for interests
in animals by expressing interests about interests with attributes
(class EQ interest, type IS four-legged-animal-search, x IS 125,
y IS 220). When the user’s interest arrives at the sensor it would
activate its sensor using the parameters provided (duration and in-
terval) and reply if it detects anything.

When the sensor detects something the data message would in-
clude attributes (type IS four-legged-animal-search, instance IS
elephant, x IS 125, y IS 220, intensity IS 0.6, confidence IS 0.85,
timestamp IS 1:20, class IS data). This message satisfies the orig-
inal interest. It encodes as attributes additional information about
what was seen and what confidence the sender has in its detection.

This example illustrates the details of a specific query. It shows
how named data provides a convenient way of encoding informa-
tion, and how geometry and well-known attributes allow simple
matching rules work for this application. Although this example
uses several attributes, some applications may use only a subset of
these methods, omitting geographic constraints (in a small sensor
network) or using a single attribute (when there is only one sensor
type). We have found that these primitives provide good building
blocks for a range of applications; we describe these in Section 5.

Although matching is reasonably powerful, it does not perfectly
cover all scenarios or tasks. Simple matching in these cases can
approximate what is required, and application-specific code can
further refine the choice. For example, perfect rectangles aligned
with the coordinate system are insufficient to describe arbitrary
geometric shapes. Non-rectangular shapes can be accomplished
either by multiple queries, or by using the smallest bounding rect-
angle and having the application ignore requests inside the rect-
angle but outside the required region. Similarly, applications can
use general attributes that are clarified with sub-attributes or pa-
rameters (type IS animal-search, subtype IS four-legged). Filters
(described next) also allow applications to influence processing.

3.3 Filters
Filters are our mechanism for allowing application-specific code

to run in the network and assist diffusion and processing. Appli-
cations provide filters before deployment of a sensor network, or
in principle filters could be distributed as mobile code packages at
run-time. Filters register what kinds of data they handle through
matching; they are then triggered each time that kind of data en-
ters the node. When invoked, a filter can arbitrarily manipulate the
message, caching data, influencing how or where it is sent onward,
or generating new messages in response. Filters have access to in-
ternal information about diffusion, including gradients and lists of
neighbor nodes.

Filters are typically used for in-network aggregation, collabora-

tive signal processing, caching, and similar tasks that benefit from
control over data movement. In addition to these applications, we
have found them very useful for debugging and monitoring.

Continuing our example, a filter can be used to suppress con-
current detections of four-legged animals from different sensors.
It would register interest in detection interests and data with at-
tributes (type IS four-legged-animal-search). It could then record
what the desired interval is, then allow exactly one reply every
interval units of time, suppressing replies from other sensors. A
more sophisticated filter could count the number of detecting sen-
sors and add that as an additional attribute, or it could generate
some kind of aggregate “confidence” rating in some application-
specific manner. In this example filtering may discard some data,
but by reducing unnecessary communication it will greatly extend
the system’s operational lifetime.

We describe some application of filters in Section 5, and quan-
tify the benefits of aggregation in one scenario in Section 6.1.

4. IMPLEMENTATIONS
There are currently three implementations of all or part of this

architecture. Our current reference implementation SCADDS dif-
fusion version 3 provides all components. MIT-Lincoln Labs has
implemented “declarative routing” that provides attribute match-
ing but no filters [14]. Both of these implementations run on Linux
on desktop PCs and PC/104-based sensor nodes [11] (embedded
x86 machines, ours with a 66MHz CPU and 16MB of RAM and
flash disk, Figure 3(a)), and on WINSng 1.0 sensor nodes [29]
(Windows-CE-based nodes with custom low-power radios, Fig-
ure 3(b)). We have also implemented micro-diffusion, a bare sub-
set of these services designed to run on Motes with tiny 8-bit pro-
cessors and only 8KB of memory (Figure 3(c)).

Source code to our implementations can be found on our web
site http://www.isi.edu/scadds.

All of our implementations build upon a simple radio API that
supports broadcast or unicast to immediate neighbors. Neighbors
must have some kind of identifier, but it is not required to be
persistent. We can use persistent identifiers (for example, Eth-
ernet MAC addresses) or operate with ephermally assigned iden-
tifiers [16].

4.1 Basic diffusion APIs
Our reference implementation includes C++ Network Routing

APIs summarized in Figure 4 (see [13] for a complete specifica-
tion and example source code). The APIs define a publish/subscribe
approach to data handling. To receive data, nodes subscribe to par-
ticular set of attributes. A subscription results in interests being
sent through the network and sets up gradients. A callback func-
tion is then invoked whenever relevant data arrives at the node.

Applications that generate information publish that fact, and
then send specific data. The attributes specified in the publish call
must match the subscription. If there are no active subscriptions,
published data does not leave the node. As a further optimization
sensor nodes may wish to avoid generating data that has no takers.
In this case the application would subscribe for subscriptions and
would be informed when subscriptions arrive or terminate.

Filter-specific APIs are shown in Figure 5. A filter is primarily
a callback procedure (the cb specified in addFilter) that is called
when matching data arrives. Rather than operate only on attribute
vectors, filters are given direct access to messages that include
identifiers for the previous and next immediate destinations. We



(a) Our PC/104 node (b) WINSng 1.0 node (c) UCB Rene Mote

Figure 3: Diffusion operational platforms.

handle NR::subscribe(NRAttrVec *subscribeAttrs,
const NR::Callback * cb);

int NR::unsubscribe(handle subscription_handle);
handle NR::publish(NRAttrVec *publishAttrs);
int NR::unpublish(handle publication_handle);
int NR::send(handle publication_handle,

NRAttrVec *sendAttrs);

Figure 4: Basic diffusion API.

handle addFilter(NRAttrVec *filterAttrs,
int16_t priority, FilterCallback *cb);

int NR::removeFilter(handle filter_handle);
void sendMessage(Message *msg, handle h,

int16_t agent_id = 0);
void sendMessageToNext(Message *msg, handle h);

Figure 5: Filter APIs.

are currently evaluating using this additional level of control to
optimize diffusion, for example using geographic information to
avoid flooding exploratory interests. We expect these interfaces to
be extended as we gain more experience with how filters are used
and what information they require.

Finally, these APIs have been designed to favor an event-driven
programming style, although they have been successfully used in
multi-threaded environments such as WINSng 1.0. We have tar-
geted event-driven programming to avoid synchronization errors
and to avoid the memory and performance overheads of multi-
threading. Evidence is growing that event-driven software is well
suited to embedded programming, particularly on very memory-
constrained platforms [21].

Also we allow filters and applications to run in the same or dif-
ferent memory address spaces from each other and the diffusion
core. Single-address space operation is necessary for very small
sensor nodes that lack memory protection and as a performance
optimization. Multiple address spaces may be desired for robust-
ness to isolate filters of different applications from each other.

4.2 MIT-LL declarative routing
Dan Coffin helped define the basic diffusion APIs (Figure 4

and [13]) and developed an independent implementation in MIT-
Lincoln Lab’s Declarative Routing system [14]. In principle all
applications that do not depend on filters will run over either im-
plementation. This level of portability has been demonstrated with
Cornell’s query proxy [5] that runs over both implementations.1

Declarative routing and data diffusion are far more similar than
they are different. Both name data rather than end-nodes. Differ-
ences are in how routes and transmission are optimized, both by
applications and the core system. The primary difference is that
declarative routing does not include filters to allow applications
to directly influence diffusion. We see filters as a critical nec-
essary component to enable general in-network data processing.
Second, Lincoln Lab’s declarative routing includes direct support
for energy and geography-aided routing so that routes are selected
to avoid energy-poor nodes and generally move “towards” a tar-
get geographic area. In our current implementation interests and
exploratory messages are flooded through the network before gra-
dients are set up for direct communication. We are currently ex-
ploring using filters to optimize diffusion (avoiding flooding) with
geographic information [39].

4.3 Micro-diffusion
Micro-diffusion is a subset of our approach implemented on

very small processors (8-bit CPU, 8KB memory). It is distin-
guished by its extremely small memory footprint and a comple-
mentary approach for deployment to our full system.

Micro-diffusion is a subset of our full system, retaining only
gradients, condensing attributes to a single tag, and supporting
only limited filters. As a result it adds only 2050 bytes of code and
106 bytes of data to its host operating system. (By comparison,
our full system requires a daemon with static sizes of 55KB code,
8KB data, and a library at 20KB code, 4KB data.) Micro-diffusion
is implemented as a component in TinyOS [21] that adds 3250B
code and 144B of data (including support for radio and a photo
sensor), so the entire system runs in less than 5.5KB of memory.
Micro-diffusion is statically configured to support 5 active gradi-
ents and a cache of 10 packets of the 2 relevant bytes per packet.

1No changes were required to our diffusion implementation, al-
though the port required one change to the application to accom-
modate a case where MIT’s implementation was less strict about
attribute matching.



Although reduced in size, the logical header format is compatible
with that of the full diffusion implementation and we are imple-
menting software to gateway between the implementations. Al-
though we do not currently provide filters in micro-diffusion, they
are an essential component of enabling in-network aggregation in
diffusion, and we plan to add them. We intend to leverage on the
ability to reprogram motes over the air [21] to program filters dy-
namically.

Motes and micro-diffusion can be used in regions where there is
need for dense sensor distribution, such as distributing photo sen-
sors in a room to detect change in light or temperature sensors for
fine grained sensing. They provide the necessary sensor data pro-
cessing capability, with the ability to use diffusion to communicate
with less resource-constrained nodes (for example, PC/104-class
nodes). Motes can also be used to provide additional multi-hop
capability under adverse wireless communication conditions.

We thus envisage deployment of a tiered architecture with both
larger and smaller nodes. Less resource-constrained nodes will
form the highest tier and act as gateways to the second tier. The
second tier will be composed of motes connected to low-power
sensors running micro-diffusion. Most of the network “intelli-
gence” is programmed into the first tier. Second-tier nodes will
be controlled and their filters programmed from these more capa-
ble nodes.

4.4 Implementation discussion
We draw two observations from our experiences with these im-

plementations. First, the range of diffusion implementations sug-
gests that both the ideas and the code are portable since there
are three independent implementations (our main implementation,
micro-diffusion, and MIT-LL’s declarative routing) and our pri-
mary implementation runs on multiple platforms (PC/104s and
WINSng 1.0 as of June 2001, with ports in progress to two new
radios and platforms). The requirements for diffusion are quite
modest in terms of CPU speed (a 15MHz 32-bit processor is suf-
ficient), memory (a few megabytes supports diffusion, an OS, and
applications), and radio (10–20kb/s bandwidth is sufficient). Sev-
eral low-power radio designs have packet sizes as small as 30B.
We require moderate size packets (100B or more) and use code
for fragmentation and reassembly when necessary. Second, micro-
diffusion demonstrates that it is possible to implement a subset of
diffusion on an embedded processor. A common preconception
is that fully custom protocols are needed for embedded systems;
these observations suggest that use of diffusion should not be pre-
cluded due to size or complexity.

5. APPLICATION TECHNIQUES FOR
SENSOR NETWORKS

We next consider application techniques in more detail. These
techniques illustrate how topology-independent low-level naming
and in-network processing can be used to build efficient applica-
tions for sensor networks. The first approach we examine is filter-
driven data aggregation, an example of how in-network processing
can reduce data traffic to conserve energy. We also consider two
approaches to provide nested queries where one sensor cues an-
other. Finally, we briefly describe several other applications that
have been implemented.

5.1 In-network data aggregation
An anticipated sensor application is to query a field of sensors

and then take some action when one or more of the sensors is acti-
vated. For example, a surveillance system could notify a biologist
if an animal enters a region. Coverage of deployed sensors will
overlap to ensure robust coverage, so one event will likely trig-
ger multiple sensors. All sensors will report detection to the user,
but communication and energy costs can be reduced if this data is
aggregated as it returns to the user. Data can be aggregated to a
binary value (there was a detection), an area (there was a detec-
tion in quadrant 2), or with some application-specific aggregation
(seismic and infrared sensors indicate 80% chance of detection).

Although details of aggregation can be application-specific, the
common systems problem is the design of mechanisms for es-
tablishing data dissemination paths to the sensors within the re-
gion, and for aggregating responses. Consider how one might
implement this kind of data fusion in a traditional network with
topologically-assigned low-level node names. First, in order to
determine which sensors are present in a given region, a binding
service must exist which, given a geographical region, lists the
node identifiers of sensors within that region. Once these sensors
are tasked, an election algorithm must dynamically elect one or
more network nodes to aggregate the data and return the result to
the querier.

Instead, our architecture allows us to realize this using oppor-
tunistic data aggregation. Sensor selection and tasking is achieved
by naming nodes using geographic attributes. As data is sent
from the sensors to the querier, intermediate sensors in the re-
turn path identify and cache relevant data. This is achieved by
running application-specific filters. These intermediate nodes can
then suppress duplicate data by simply not propagating it, or they
may slightly delay and aggregate data from multiple sources. We
are also experimenting with influencing the dynamic selection of
aggregation points to minimize overall data movement.

Opportunistic data aggregation benefits from several aspects of
our approach. Filters provide a natural approach to inject applica-
tion-specific code into the network. Attribute naming and match-
ing allow these filters to remain inactive until triggered by relevant
data. A common attribute set means that filters incur no network
costs to interact with directory or mapping services.

In prior work we analyzed the performance of diffusion with
and without aggregation through simulation [23]. In Section 6.1
we evaluate our implementation of this over real sensor nodes and
validate our initial results with laboratory tests.

5.2 Nested queries
Real-world events often occur in response to some environmen-

tal change. For example, a person entering a room is often corre-
lated with changes in light or motion, or a flower’s opening with
the presence or absence of sunlight. Multi-modal sensor networks
can use these correlations by triggering a secondary sensor based
on the status of another, in effect nesting one query inside another.
Reducing the duty cycle of some sensors can reduce overall en-
ergy consumption (if the secondary sensor consumes more energy
than the initial sensor, for example as an accelerometer triggering a
GPS receiver) and network traffic (for example, a triggered imager
generates much less traffic than a constant video stream). Alter-
natively, in-network processing might choose the best application
of a sparse resource (for example, a motion sensor triggering a
steerable camera).
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Figure 6: Two approaches to implementing nested queries.
Squares are initial sensors, gray circles are triggered sensors,
and the large circle is the user. Thin dashed lines represent
communication to initial sensors; bold lines are communica-
tion to the triggered sensor.

Figure 6 shows two approaches for a user to cause one sensor
to trigger another in a network. In both cases we assume sensors
know their locations and not all nodes can communicate directly.
Part (a) shows a direct way to implement this: the user queries the
initial sensors (small squares), when a sensor is triggered, the user
queries the triggered sensor (the small gray circle). The alterna-
tive shown in part (b) is a nested, two-level approach where the
user queries the triggered sensor which then sub-tasks the initial
sensors. This nested query approach grew out of discussions with
Philippe Bonnet and embedded database query optimization in his
COUGAR database [5].

The advantage of a nested query is that data from the initial sen-
sors can be interpreted directly by the triggered sensor, rather than
passing through the user. In monitoring applications the initial
and triggered sensors would often be quite close to each other (to
cover the same physical area), while the user would be relatively
distant. A nested query localizes data traffic near the triggering
event rather than sending it to the distant user, thus reducing net-
work traffic and latency. Since energy-conserving networks are
typically low-bandwidth and may be higher-latency, reduction in
latency can be substantial, and reductions in aggregate bandwidth
to the user can mean the difference between an overloaded and
operational network. The challenges for nested queries are how to
robustly match the initial and triggered sensors and how to select
a good triggered sensor if only one is desired.

Implementation of direct queries is straightforward with attribute-
addressed sensors. The user subscribes to data for initial sensors
and when something is detected he requests the status of the trig-
gered sensor (either by subscribing or asking for recent data). Di-
rect queries illustrate the utility of predefined attributes identifying
sensor types. Diffusion may also make use of geography to opti-
mize routing.

Nested queries can be implemented by enabling code at each
triggered sensor that watches for a nested query. This code then
sub-tasks the relevant initial sensors and activates its local trig-
gered sensor on demand. If multiple triggered sensors are accept-
able but there is a reasonable definition of which one is best (per-
haps, the most central one), it can be selected through an elec-

tion algorithm. One such algorithm would have triggered sensors
nominate themselves after a random delay as the “best”, inform-
ing their peers of their location and election (this approach is in-
spired by SRM repair timers [17]). Better peers can then dispute
the claim. Use of location as an external frame of reference de-
fines a best node and allows timers to be weighted by distance to
minimize the number of disputed claims.

In Section 6.2 we evaluate nested queries with experiments in
our testbed.

5.3 Other applications
In addition to these approaches we have explored at ISI, our

system has been used by several other research efforts.
Researchers at Cornell have used our system to provide commu-

nication between an end-user database and application that repre-
sents and visualizes a sensor field and query proxies in each sen-
sor node [5]. This application used attributes to identify sensors
running query proxies and to pass query byte-codes to the prox-
ies. They also originated the idea of using a nested approach for
nested queries. Future work includes understanding what network
information is necessary for database query optimization and al-
ternative approaches for nested queries.

Researchers at BAE Systems and Pennsylvania State University
have used our system for collaborative signal processing. BAE
systems contributed signal processing code and systems integra-
tion, while PSU provided sensor fusion algorithms [8]. The com-
bined system used our system to communicate data between sen-
sors using named data and diffusion. At the time our filter archi-
tecture was not in place; interesting future work is to evaluate how
sensor fusion would be done as a filter.

6. EVALUATION
The approaches described in this paper are useful if they can

be efficiently implemented and improve the energy-efficiency of
distributed systems such as sensor nets. In Section 5 we described
several applications that employ these techniques. In this section,
we measure the benefits of aggregation and nested queries and
verify raw matching performance.

6.1 Aggregation benefits
In Section 5.1, we argued that it is relatively easy to build sen-

sor network applications using attribute-based naming, and in-
network filters. In earlier work, we have observed that in-network
aggregation is important to the performance of data diffusion [23].
In this section, we validate these results with an actual implemen-
tation of a simple surveillance application using attribute-based
names and filters.

We examined in-network aggregation in our testbed of 14 PC/104
sensor nodes distributed on two floors of ISI (Figure 7). These sen-
sors are connected by Radiometrix RPC modems (off-the-shelf,
418 MHz, packet-based radios that provide about 13kb/s through-
put) with 10dB attenuators on the antennas to allow multi-hop
communications in our relatively confined space. The exact topol-
ogy varies depending on the level of RF activity, and the network
is typically 5 hops across.

To evaluate the effect of aggregation we placed a sink on one
side of the topology (“D” at node 28) and then placed data sources
on the other side (“S” at nodes 25, 16, 22, and 13), typically 4 hops
apart. All sources generate events representing the detection of



Figure 7: Node positions in our sensor testbed. Light nodes
(11, 13, 16) are on the 10th floor; the remaining dark nodes
are on the 11th floor. Radio range varies greatly depending on
node position, but the longest stable link was between nodes 20
and 25.

some object at the rate of one event every 6 seconds. For ex-
periment repeatability events are artificially generated, rather than
taken from a physical sensor and signal processing. Each event
generates a 112 bytes message and is given sequence numbers
that are synchronized at experiment start.2 All nodes were con-
figured with aggregation filters that pass the first unique event and
suppress subsequent events with identical sequence numbers. Al-
though this scenario abstracts some details of a complete sensor
network (for example, real signal processing may have different
sensing delays), we believe it captures the essence of the network-
ing component of multi-sensor aggregation.

We would like to compare the energy expended per received
event. Unfortunately, we cannot measure that directly for two rea-
sons. First, we do not have hardware to directly measure energy
consumption in a running system. Second, we have previously
observed that choice of MAC protocol can completely dominate
energy measurements. In low power radios, MAC protocols that
do not sleep periodically are dominated by the amount of time
spent listening, regardless of choice of protocol. Thus energy-
conscious protocols like PAMAS [32] or TDMA are necessary for
long-lived sensor networks. We are currently experimenting with
power-aware MAC approaches.

Although we currently cannot measure energy consumption on
an appropriate MAC, we can estimate the effectiveness of reduc-
ing traffic for MACs with different duty cycles. A simple model
of energy consumption is:

pa = dp`t` + prtr + psts

where p and t define the relative power and time spent listen-
ing, receiving, and sending and d is defined as the required lis-
ten duty cycle (the fraction of time the radio must be listening to
receive all traffic destined to it). We found our sensor network
contained pockets of severe congestion, but in the aggregate, ra-
dios listen:receive:send times were about 1:3:40. Relative energy

2An operational sensor network would use timestamps instead of
sequence numbers. Both require synchronization, but time can
be synchronized globally with GPS or NTP. We use sequence
numbers because at the time of this experiment we had not syn-
chronized our clocks. Experimentally, other than synchronization
overhead, sequence numbers and timestamps are equivalent.
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Figure 8: Bytes sent from all diffusion modules, normalized to
the number of distinct events, for varying numbers of sources.

consumption of listen:receive:send has been measured at ratios
from 1:1.05:1.4 to 1:2:2.5 [37]. For simplicity, assume energy
consumption ratios of 1:2:2. With these parameters, energy us-
age for nodes with a duty cycle of 1 are completely dominated by
energy spent listening. At duty cycle of 22% half of the energy is
spent listening. Duty cycles of 10% begin to be dominated by send
cost. Duty cycle for most radios today is 100%, but TDMA radios
such as in WINSng nodes [29] may have duty cycles of 10–15%
for non-base-stations. This analysis illustrates the importance of
energy-conserving MAC protocols.

Since we cannot directly measure energy per event, Figure 8
measures bytes sent from diffusion in all nodes in the system nor-
malized to the number of distinct events received. Each point in
this graph represents the mean of five 30-minute experiments with
95% confidence intervals. Performance with one source is basi-
cally identical with and without suppression (this form of aggre-
gation). As expected, suppression requires less data per event with
multiple sources than experiments without suppression. With sup-
pression the amount of traffic is roughly constant regardless of
the number of sources. This application-specific data aggregation
shows the benefit of in-network processing. It also shows that dif-
fusion is useful for point-to-multipoint communication, since traf-
fic represents both data and control traffic. Comparing traffic with
and without suppression shows that suppression is able to reduce
traffic by up to 42% for four sources. The network exhibits very
high loss rates at that level of traffic. Our current MAC is quite un-
sophisticated, performing only simple carrier detection and lack-
ing RTS/CTS or ARQ. Since all messages are broken into several
27-byte fragments, loss of a single fragment results in loss of the
whole message, and hidden terminals are endemic to our multi-
hop topology, this MAC performs particularly poorly at high load.
We are currently working on a better MAC protocol.

We can confirm these results with a simple traffic model. We
approximate all messages as 127B long and add together interest
messages (sent every 60s and flooded from each node), reinforce-
ment messages (sent on the reinforced path between the sink and
each source), simple data messages (9 out of every 10 data mes-
sages, sent only on the reinforced path, and either aggregated or
not), and exploratory data messages (1 out of every 10 data mes-
sages, sent from each source and flooded in turn from each node,



again possibly aggregated). If data messages are not aggregated,
each source incurs the cost of the full path, while if data messages
are aggregated after the first hop each incurs one hop cost to the
aggregation point and then one message will travel on to the sink.
Summing the message cost and normalizing per event we expect
aggregation to provide a flat 990B/event independent of the num-
ber of sources, and we expect bytes sent per event to increase from
990 to 3289B/event without aggregation as the number of sources
rise from 1 to 4.

The shape of this prediction matches our experimental results,
but in absolute terms it underpredicts the B/event of aggregation
and overpredicts the 4-source/no-aggregation case. We believe
these differences are due to MAC-layer collisions in the experi-
ment that tend to drive bytes-per-event to the middle. Only 55–
80% of events generated in the experiment were delivered to the
sink, so bytes-per-event in less congested portions of the exper-
iment (with one source or aggregation) is high because traffic is
normalized over fewer events. On the other hand, with four sources
and no aggregation, we believe collisions happen very near the
data sources and so the aggregate amount of data sent is lower
that predicted. In addition, we sometimes observe longer paths in
experiment than we expected.

These experimental measurements of aggregation are also use-
ful to validate our previous simulation experiments that consider a
wider range of scenarios. Previous simulation studies have shown
that aggregation can reduce energy consumption by a factor of 3–
5� in a large network (50–250 nodes) with five active sources and
five sinks (Figure 6b from [23]). Although care must be used in
comparing energy to bytes sent, a 3–5-fold energy savings with
five sources is much greater than the 42% (or 1.7-fold) traffic sav-
ings we observe with four sources. The primary reason for this
difference is differences in ratio of exploratory to data messages
in these systems. Exploratory messages (called low-data rate mes-
sages in [23]) are used to select good gradients and so are flooded
to all nodes. Data messages (called high-rate messages in [23])
are sent only on reinforced gradients forming a path between the
sources and sinks. In simulation the ratio of exploratory to data
messages sent from a source was about 1:100 (exploratory mes-
sages were sent every 50s, data every 0.5s, messages were mod-
eled as 64B packets). In our testbed this ratio was about 1:10
(exploratory messages every 60s, data every 6s, with messages
of roughly the same size). Increasing this ratio in experiment
was not possible given our small radio bandwidth (13kb/s rather
than 1.6Mb/s in simulation) while keeping reasonable experimen-
tal running times. This large difference in ratios is consistent with
the large difference in energy or traffic savings.

A potential disadvantage of data aggregation is increased la-
tency. The effect of aggregation on latency is strongly dependent
on the specific, application-determined aggregation algorithm. The
algorithm used in these experiments does not affect latency at all,
since we forward unique events immediately upon reception and
then suppress any additional duplicates (incurring only the addi-
tional negligible cost of searching for duplicates). Other aggre-
gation algorithms, such as those that delay transmitting a sensor
reading with the hope of aggregating readings from other sensors,
can add some latency. Understanding aggregation and sensor fu-
sion algorithms is an important area of future work.

Although we have quantified the benefits of in-network aggre-
gation in a specific application, aggregation is one example of
in-network processing. Other examples range from simple data
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Figure 9: Percentage of audio events successfully delivered to
the user.

caching to collaborative signal processing. As our experiments
show, not only do attribute matching and filters make aggregation
and similar services easy to provide, they also enable noticeable
performance improvements.

6.2 Nested query benefits
In Section 5.2 we suggested that nested queries could reduce

network costs and latency, and we argued that nested queries could
be implemented using attributes and filters. To validate our claim
about the potential performance benefits of this implementation
we measure the performance of an application that uses nested
queries against one that does not.

The application is similar to that described in Section 5.2 and
Figure 6: a user requests acoustic data correlated with (triggered
by) light sensors. We reuse our PC/104 testbed shown in Fig-
ure 7 placing the user “U” at node 39, the audio sensor “A” at
node 20, and light sensors “L” at nodes 16, 25, 22, and 13. It is
one hop from the light sensors to the audio sensor, and two hops
from there to the user node. To provide a reproducible experiment
we simulate light data to change automatically every minute on
the minute. Light sensors report their state every 2s (no special
attempt is made to synchronize or unsynchronize sensors). Audio
sensors generate simulated audio data each time any light sensor
changes state. Light and audio data messages are about 100 bytes
long.

Figure 9 shows the percentage of light change events that suc-
cessfully result in audio data delivered to the user. (Data points
represent the mean of three 20-minute experiments and show 95%
confidence intervals.) The total number of possible events are the
number of times all light sources change state and a successful
event is audio data delivered to the user. These delivery rates
do not reflect per-hop message delivery rates (which are much
higher), but rather the cumulative effect of sending best-effort data
across three or five hops for nested or flat queries, respectively.

This system is very congested, and as described above (Sec-
tion 6.1), our primitive MAC protocol exaggerates the impact of
congestion. Missing events translate into increased detection la-
tency. Although a sensor network could afford to miss a few events
(since they would be retransmitted in the next time the sensor is
measured), these loss rates are unacceptably high for an opera-



Set A: interest Set B: data
class IS interest class IS data
task EQ “detectAnimal” task IS “detectAnimal”
confidence GT 50 confidence IS 90
latitude GE 10.0 latitude IS 20.0
latitude LE 100.0 longitude IS 80.0
longitude GE 5.0 target IS “4-leg”
longitude LE 95.0
target IS “4-leg”

Figure 10: Attributes used for matching experiments.

tional system.
However, this experiment sharply contrasts the bandwidth re-

quirements of nested and flat queries. Even with one sensor the
flat query shows significantly greater loss than the nested query
because both light and audio data must travel to the user. Both
flat and nested queries suffer greater loss when more sensors are
present, but the one-level query falls off further. Comparing the
delivery rates of nested queries with one-level queries shows that
localizing the data to the sensors is very important to parsimo-
nious use of bandwidth. In an uncongested network we expect
that nested queries would allow operation with a lower level of
data traffic than one-level queries and so would allow a lower ra-
dio duty cycle and a longer network lifetime.

6.3 Run-time costs of matching
Attribute matching is used in all communication between sen-

sors, filters, and applications in our system. Although technol-
ogy trends suggest rapid improvement in processor performance,
price, and size, sensor nodes may chose to hold performance con-
stant and leverage technology through reduced price and size, so
run-time performance must be considered. A second constraint is
memory storage, particularly in very small implementations.

To evaluate matching performance we examined the cost of
matching data from a sensor. The basic matching in that case com-
pares an 8-element interest against a 6-element data (attributes are
shown in Figure 10). To evaluate the cost of larger data objects
we increased the number of attributes in the data from 6 to 30 at-
tributes. This experiment was done on our PC/104 sensor node
with a 66MHz AMD 486-class CPU. To evaluate the cost of a sin-
gle match we measured cost of many matches (5000 for matching
or 10,000 for the non-matching case) in a loop and normalized, re-
peating this experiment 1000 times to avoid undue system effects
such as interrupts. The order of attributes in each set is random-
ized each experiment. We also show 95% confidence intervals, al-
though they are always less than 5% of the mean. Although mem-
ory caching will cause this approach to underestimate the cost of
a match, the basic trends it identifies should be applicable to oper-
ational systems.

Our expectation is that the cost of matching is linear with the
number of elements. This is confirmed in Figure 11 that shows
the cost of matching as the number of attributes in one attribute
set increases in different ways. The two lowest lines (no-match/IS
and no-match/EQ) show the case where one of the attributes in
set A is not matched by those in set B (specifically, the confidence
value in set B is changed from 90 to 10). Because the two-way
matching algorithm tests the formals in set A first, the incremental
cost of additional attributes in set B is fairly small in this case,
and it is insensitive to the type of attribute added. If the failing
formal was in set B we would expect the cost to be higher (mid-
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Figure 11: Matching performance as the number of attributes
grow.

way between the measured data).
The two higher lines (match/IS and match/EQ) show the cost

of matching when all attributes succeed. The difference in cost
of additional attributes in these lines shows the cost of additional
matching. In the match/EQ line all additional attributes are for-
mals (additions of the “class EQ interest” attribute), so each new
attribute must be matched against set A. For match/IS, additional
attributes are actuals (repetitions of ‘extra IS “foo” ’) that must be
examined but do not require searching.

Although our current implementation is completely unoptimized,
the absolute performance of these operations is quite reasonable.
At 500�s/match for small attribute sets our quite slow PC/104
can match 2000 sets per second. Although quite slow by Inter-
net router standards, this is reasonable for sensor networks where
we expect high-level events to happen with frequencies of 10Hz
or less.

Finally, these measurements suggest several potential optimiza-
tions to matching performance. Segregating actuals from formals
can reduce search time (since formals cannot match other formals
there is no need to compare them). Attributes could be statically or
dynamically optimized to move the attributes least likely to match
to the front. We plan to explore these kinds of optimizations in the
future.

6.4 Experiment Discussion
These experiments have provided new insight into sensor net-

work operation, building substantially on our prior simulation stud-
ies [23].

These experiments are first examination of nested queries and
matching performance. They suggest that the CPU overhead of
matching should not be a constraint for reasonably powerful sen-
sor nodes and that nested queries can greatly reduce contention by
localizing data movement.

These experiments have explored low-bandwidth operation. Pre-
vious simulation studies of sensor networks often have not used
the low-bandwidth radios we see in actual sensor-network hard-
ware. Protocols and scenarios behave qualitatively different at
10–20kb/s for sensor networks rather than the 3–12Mb/s common
to wireless 802.11 LANs. Even with our early operational expe-
rience in small-scale demonstrations and testing, we did not ap-



preciate the difficulty of operating a 14-node sensor network at a
relatively high utilization. Our observations suggest two areas of
future work: first, sensor networks must adapt to local node den-
sities (we are beginning to explore this area [11]). Second, more
work is needed to understand how diffusion’s parameters map to
different needs, particularly the trade-offs between overhead and
reliability present in the frequency of exploratory messages, in-
terests, and reinforcements. Finally, the diffusion applications we
currently use operate in an open loop; feedback and congestion
control are needed.

Two aspects of radio propagation proved unexpectedly difficult.
First, some experiments seemed to show asymmetric links (com-
munication was fine in one direction but poor or impossible in
the other). Diffusion does not currently work well with asymmet-
ric links; we are considering how to best revise it. Second, some
links provided only intermittent connectivity. A future direction
for diffusion might send similar data over multiple paths to gain
robustness when faced with low-quality links. Current simulation
models, even with statistical noise, do not adequately reflect these
observed propagation characteristics.

Finally, we were generally happy with our approach to attribute
naming and filters. It was reasonably easy to build and adapt our
sample applications and debugging software.

7. FUTURE WORK
This work describes our current approach to constructing robust

distributed sensor networks for a few applications. It suggests sev-
eral areas for future work including enhancing our testbed and pro-
tocols, applying them to additional applications, and understand-
ing how to build sensor networks.

We have several planned changes to our testbed hardware. Most
importantly, we plan to move to a different radio by RF Mono-
lithics and to use a UCB Mote as the packet controller. The packet-
level controller of our Radiometrix RPC was very helpful for rapid
development, but this revised approach will give us complete con-
trol over the MAC protocol.

We have now explored diffusion performance both in simula-
tion and with testbed experiments. In-network aggregation shows
qualitatively the same results in both evaluations (Section 6.1). A
next step is to use the experiments to parametrize the simulations.

In this work we were repeatedly challenged by the difficulty
in understanding what was going on in a network of dozens of
physically distributed nodes. Our current environment augments
the radio network with a separate wired network for experimen-
tal data collection, but much more work is needed in developing
analysis tools for these networks. Tools are needed to report the
changing radio topology, observe collision rates and energy con-
sumption, permit more flexible logging, and accurately synchro-
nize node clocks. We have begun work on in-network monitoring
tools [40], but more work is needed.

Appropriate MAC protocols for sensor networks is a continu-
ing challenge. In spite of published work in this area [3, 33] and
ongoing activities, a freely available, energy aware MAC protocol
remains needed. We and others are currently exploring alterna-
tives here; we hope solutions will be forthcoming.

A balance of control and data traffic is particularly important in
bandwidth-constrained systems such as sensor networks. Several
known techniques to constrain control traffic exist for soft-state
protocols in wired networks [24, 31, 36]; these approaches need

to be applied to our system.
We have explored two applications of sensor networks and col-

laborated on other applications, but many other applications re-
main. One interesting direction is to explore how collaborative
signal processing interacts with in-network processing and filters.

Finally, although we focus on wireless sensor networks, the
techniques we develop are also relevant to wired sensor networks.
Wired connections greatly reduce bandwidth constraints and and
eliminate power constraints, but attribute-based naming can re-
duce system complexity by decoupling data sources and sinks, and
in-network processing may reduce latency and improve scalabil-
ity. Although prior systems have separately used these abstrac-
tions for virtual information systems, a future direction is to apply
them to large, wired sensor networks that are coupled with the
physical world.

8. CONCLUSION
This paper has described an approach to distributed systems

built around attribute-named data and in-network processing. By
using attributes with external meaning (such as sensor type and
geographic location) at the lowest levels of communication, this
approach avoids multiple levels of name binding common to other
approaches. Attribute-named data in turn enables in-network pro-
cessing with filters, supporting data aggregation, nested queries
and similar techniques that are critical to reduce network traffic
and conserve energy. We evaluated the effectiveness of these tech-
niques by quantifying the benefits of in-network processing for
data aggregation and nested queries. In one experiment we found
that aggregation reduces traffic by up to 42% and nested queries
reduces loss rates by 15–30%. Although aggregation has previ-
ously been studied in simulation, these experiments are the first
evaluation of these techniques in an operational testbed. These
approaches are important in the emerging domain of wireless sen-
sor networks where network and power resource constraints are
fundamental.
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