
BASE: Using Abstraction to Improve Fault Tolerance

Rodrigo Rodriguesy, Miguel Castrox, and Barbara Liskovy

yMIT Laboratory for Computer Science
200 Technology Sq., Cambridge MA 02139, USA

xMicrosoft Research Ltd.
1 Guildhall St., Cambridge CB2 3NH, UK

rodrigo@lcs.mit.edu, mcastro@microsoft.com, liskov@lcs.mit.edu

ABSTRACT
Software errors are a major cause of outages and they are
increasingly exploited in malicious attacks. Byzantine fault
tolerance allows replicated systems to mask some software
errors but it is expensive to deploy. This paper describes a
replication technique, BASE, which uses abstraction to re-
duce the cost of Byzantine fault tolerance and to improve its
ability to mask software errors. BASE reduces cost because
it enables reuse of o�-the-shelf service implementations. It
improves availability because each replica can be repaired
periodically using an abstract view of the state stored by
correct replicas, and because each replica can run distinct
or non-deterministic service implementations, which reduces
the probability of common mode failures. We built an NFS
service where each replica can run a di�erent o�-the-shelf
�le system implementation, and an object-oriented database
where the replicas ran the same, non-deterministic imple-
mentation. These examples suggest that our technique can
be used in practice | in both cases, the implementation re-
quired only a modest amount of new code, and our perfor-
mance results indicate that the replicated services perform
comparably to the implementations that they reuse.

1. INTRODUCTION
There is a growing demand for highly-available systems

that provide correct service without interruptions. These
systems must tolerate software errors because these are a
major cause of outages [13]. Furthermore, there is an in-
creasing number of malicious attacks that exploit software
errors to gain control or deny access to systems that provide
important services.
This paper proposes a replication technique, BASE, that

combines Byzantine fault tolerance [31] with work on data

This research was partially supported by DARPA under con-
tract F30602-98-1-0237 monitored by the Air Force Research
Laboratory. Rodrigo Rodrigues was partially supported by
a Praxis XXI fellowship.

abstraction [20]. Byzantine fault tolerance allows a repli-
cated service to tolerate arbitrary behavior from faulty repli-
cas, e.g., behavior caused by a software bug or an attack.
Abstraction hides implementation details to enable the reuse
of o�-the-shelf implementations of important services (e.g.,
�le systems, databases, or HTTP daemons) and to improve
the ability to mask software errors.
We extended the BFT library [7, 8] to implement BASE.

(BASE is an acronym for BFT with Abstract Speci�cation
Encapsulation.) The original BFT library provides Byzan-
tine fault tolerance with good performance and strong cor-
rectness guarantees if no more than 1=3 of the replicas fail
within a small window of vulnerability. However, it requires
all replicas to run the same service implementation and to
update their state in a deterministic way. Therefore, it
cannot tolerate deterministic software errors that cause all
replicas to fail concurrently and it complicates reuse of ex-
isting service implementations because it requires extensive
modi�cations to ensure identical values for the state of each
replica.
The BASE library and methodology described in this pa-

per correct these problems | they enable replicas to run dif-
ferent or non-deterministic implementations. The method-
ology is based on the concepts of abstract speci�cation and
abstraction function from work on data abstraction [20]. We
start by de�ning a common abstract speci�cation for the ser-
vice, which speci�es an abstract state and describes how each
operation manipulates the state. Then we implement a con-
formance wrapper for each distinct implementation to make
it behave according to the common speci�cation. The last
step is to implement an abstraction function (and one of its
inverses) to map from the concrete state of each implemen-
tation to the common abstract state (and vice versa).
The methodology o�ers several important advantages.

Reuse of existing code. BASE implements a form of state
machine replication [17, 35], which allows replication of ser-
vices that perform arbitrary computations, but requires de-
terminism: all replicas must produce the same sequence of
results when they process the same sequence of operations.
Most o�-the-shelf implementations of services fail to satisfy
this condition. For example, many implementations pro-
duce timestamps by reading local clocks, which can cause
the states of replicas to diverge. The conformance wrapper
and the abstract state conversions enable the reuse of exist-
ing implementations without modi�cations. Furthermore,
these implementations can be non-deterministic, which re-
duces the probability of common mode failures.
Software Rejuvenation through proactive recovery.

It has been observed [16] that there is a correlation between
the length of time software runs and the probability that
it fails. BASE combines proactive recovery [8] with ab-
straction to counter this problem. Replicas are recovered
periodically even if there is no reason to suspect they are
faulty. Recoveries are staggered so that the service remains
available during rejuvenation to enable frequent recoveries.
When a replica is recovered, it is rebooted and restarted
from a clean state. Then it is brought up to date using a
correct copy of the abstract state that is obtained from the
group of replicas. Abstraction may improve availability by
hiding corrupt concrete states, and it enables proactive re-
covery when replicas do not run the same code or run code
that is non-deterministic.
Opportunistic N-version programming. Replication is
not useful when there is a strong positive correlation be-
tween the failure probabilities of the di�erent replicas, e.g.,
deterministic software bugs cause all replicas to fail at the
same time when they run the same code. N-version pro-
gramming [9] exploits design diversity to reduce the proba-
bility of correlated failures, but it has several problems [13]:
it increases development and maintenance costs by a factor
of N or more, adds unacceptable time delays to the im-
plementation, and does not provide a mechanism to repair
faulty replicas.
BASE enables an opportunistic form of N-version pro-

gramming by allowing us to take advantage of distinct, o�-
the-shelf implementations of common services. This ap-
proach overcomes the defects mentioned above: it eliminates
the high development and maintenance costs of N-version
programming, and also the long time-to-market. Addition-
ally, we can repair faulty replicas by transferring an encoding
of the common abstract state from correct replicas.
Opportunistic N-version programming is a viable option

for many common services, e.g., relational databases, HTTP
daemons, �le systems, and operating systems. In all these
cases, competition has led to four or more distinct implemen-
tations that were developed and are maintained separately
but have similar (although not identical) functionality. Since
each o�-the-shelf implementation is sold to a large number
of customers, the vendors can amortize the cost of producing
a high quality implementation.
Furthermore, the existence of standard protocols that pro-

vide identical interfaces to di�erent implementations, e.g.,
ODBC [11] and NFS [27], simpli�es our technique and keeps
the cost of writing the conformance wrappers and state con-
version functions low. We can also leverage the e�ort to-
wards standardizing data representations using XML.
The paper explains the methodology by giving two ex-

amples, a replicated �le service where replicas run di�erent
operating systems and �le systems, and a replicated object-
oriented database, where the replicas run the same imple-
mentation but the implementation is non-deterministic. The
paper also provides an evaluation of the methodology based
on these examples; we evaluate the complexity of the con-
formance wrapper and state conversion functions and the
overhead they introduce.
The remainder of the paper is organized as follows. Sec-

tion 2 describes our methodology and the BASE library.
Section 3 explains how we applied the methodology to build
the replicated �le system and object-oriented database. We
evaluate our technique in Section 4. Section 5 discusses re-
lated work and Section 6 presents our conclusions.

2. THE BASE TECHNIQUE
This section provides an overview of our replication tech-

nique. It starts by describing the methodology that we use
to build a replicated system from existing service implemen-
tations. It ends with a description of the BASE library.

2.1 Methodology
The goal is to build a replicated system by reusing a set of

o�-the-shelf implementations, I1; :::; In, of some service. Ide-
ally, we would like n to equal the number of replicas so that
each replica can run a di�erent implementation to reduce
the probability of simultaneous failures. But the technique
is useful even with a single implementation.
Although o�-the-shelf implementations of the same ser-

vice o�er roughly the same functionality, they behave dif-
ferently: they implement di�erent speci�cations, S1; :::; Sn,
using di�erent representations of the service state. Even the
behavior of di�erent replicas that run the same implementa-
tion may be di�erent when the speci�cation they implement
is not strong enough to ensure deterministic behavior. For
example, the NFS speci�cation [27] allows implementations
to choose the value of �le handles arbitrarily.
BASE, like any form of state machine replication, requires

determinism: replicas must produce the same sequence of
results when they execute the same sequence of operations.
We achieve determinism by de�ning a common abstract spec-
i�cation, S, for the service that is strong enough to ensure
deterministic behavior. This speci�cation de�nes the ab-
stract state, an initial state value, and the behavior of each
service operation.
The speci�cation is de�ned without knowledge of the in-

ternals of each implementation. It is suÆcient to treat them
as black boxes, which is important to enable the use of exist-
ing implementations. Additionally, the abstract state cap-
tures only what is visible to the client rather than mimicking
what is common in the concrete states of the di�erent imple-
mentations. This simpli�es the abstract state and improves
the e�ectiveness of our software rejuvenation technique.
The next step, is to implement conformance wrappers,

C1; :::; Cn, for each of I1; :::; In. The conformance wrappers
implement the common speci�cation S. The implementa-
tion of each wrapper Ci is a veneer that invokes the oper-
ations o�ered by Ii to implement the operations in S; in
implementing these operations this veneer makes use of a
conformance representation that stores whatever additional
information is needed to allow the translation from the con-
crete behavior of the implementation to the abstract behav-
ior. The conformance wrapper also implements some addi-
tional methods that allow a replica to be shutdown and then
restarted without loss of information.
The �nal step is to implement the abstraction function

and one of its inverses. These functions allow state transfer
among the replicas. State transfer is used to repair faulty
replicas, and also to bring slow replicas up-to-date when
messages they are missing have been garbage collected. For
state transfer to work, replicas must agree on the value of the
state of the service after executing a sequence of operations;
they will not agree on the value of the concrete state but our
methodology ensures that they will agree on the value of the
abstract state. The abstraction function is used to convert
the concrete state stored by a replica into the abstract state,
which is transferred to another replica. The receiving replica
uses its inverse abstraction function to convert the abstract

state into its own concrete state representation.
To enable eÆcient state transfer between replicas, the ab-

stract state must be de�ned as an array of objects. The
array has a �xed maximum size, but the objects it contains
can vary in size. We explain how this representation enables
eÆcient state transfer in Section 2.2.

2.1.1 Applicability
In theory, the methodology can be used to build a repli-

cated service from any set of existing implementations of any
service. But sometimes this may not be practical because of
the following three problems.
Undocumented behavior. To apply the methodology,
we need to understand and model the behavior of each ser-
vice implementation. We do not need to model low level
implementation details but only the behavior that can be
observed by the clients of that implementation. We believe
that the behavior of most software is well documented at this
level, and we can use black box testing to understand small
omissions in the documentation and small deviations from
documented behavior. Implementations whose behavior we
cannot model are unlikely to be of much use. But it may
be possible to remove operations whose behavior is not well
documented from the abstract speci�cation, or to implement
these operations entirely in the conformance wrapper.
Very di�erent behavior. If the implementations used to
build the service behave very di�erently, any common ab-
stract speci�cation will deviate signi�cantly from the behav-
ior of some implementations. Theoretically, it is possible to
write arbitrarily complex conformance wrappers and state
conversion functions to bridge the gap between the behavior
of the di�erent implementations and the common abstract
speci�cation. In the worst case, we could implement the
entire abstract speci�cation in the wrapper code. But in
practice this is undesirable because it is expensive to write
complex wrappers, and complex wrappers are more likely to
introduce new bugs. Therefore, it is important to use a set
of implementations with similar behavior.
Overly narrow interfaces. The external interface of some
implementations may not allow the wrapping code to read
or write data that has an impact on the behavior observed
by the client. There are three options in this case. First, the
data can be shadowed in the conformance wrapper. This is
practical if it is a small amount of data that is simple to
maintain. Second, it may be possible to change the abstract
speci�cation such that this data has no impact on the be-
havior observed by the client. Third, it may be possible to
gain access to internal APIs that avoid the problem.
There is an important trend that avoids these problems

and, therefore, makes it easier to apply the methodology.
Market forces pressure vendors to o�er interfaces that are
compliant with standard speci�cations for interoperability,
e.g., ODBC [11]. Usually, a standard speci�cation S0 can-
not be used as the common speci�cation S because it is
too weak to ensure deterministic behavior. But it can be
used as a basis for S and, because S and S0 are similar, it
is relatively easy to implement conformance wrappers and
state conversion functions, and these implementations can
be reused across implementations. This is illustrated by the
replicated �le system example in Section 3. In this exam-
ple, we take advantage of the NFS standard by using the
same conformance wrapper and state conversion functions
to wrap di�erent implementations.

2.2 The BASE Library
The BASE library extends BFT with the features nec-

essary to support the methodology. Figure 1 presents the
library's interface.

Client call:
int invoke(Byz_req *req, Byz_rep *rep,

bool read_only);

Execution upcall:
int execute(Byz_req *req, Byz_rep *rep,

int client, Byz_buffer *non-det);

State conversion upcalls:
int get_obj(int i, char** obj);

void put_objs(int nobjs, char **objs,
int *indices, int *sizes);

Checkpointing:
void modify(int nobjs, int* objs);

Non-determinism upcalls:
int propose_value(Seqno seqno, Byz_buffer *req,

Byz_buffer *non-det);

int check_value(Seqno seqno, Byz_buffer *req,
Byz_buffer *non-det);

Recovery upcalls:
void shutdown_proc(FILE *out);

void restart_proc(FILE *in);

Figure 1: BASE Interface and Upcalls

The invoke procedure is called by the client to invoke an
operation on the replicated service. This procedure carries
out the client side of the replication protocol and returns
the result when enough replicas have responded.
When the library needs to execute an operation at a repli-

ca, it makes an upcall to an execute procedure that is im-
plemented by the conformance wrapper for the service im-
plementation run by the replica.
To perform state transfer in the presence of Byzantine

faults, it is necessary to be able to prove that the state being
transferred is correct. Otherwise, faulty replicas could cor-
rupt the state of out-of-date but correct replicas. (A detailed
discussion of this point can be found in [8].) Consequently,
replicas cannot discard a copy of the state produced after
executing a request until they know that the state produced
by executing later requests can be proven correct. Replicas
could keep a copy of the state after executing each request
but this would be too expensive. Instead replicas keep just
the current version of the concrete state plus copies of the
abstract state produced every k-th request (e.g., k=128).
These copies are called checkpoints. Replicas inform each
other when they produce a checkpoint and the library only
transfers checkpoints between replicas.
Creating checkpoints by making full copies of the abstract

state would be too expensive. Instead, the library uses copy-
on-write such that checkpoints only contain the di�erences
relative to the current abstract state. Similarly, transferring
a complete checkpoint to bring a recovering or out-of-date
replica up to date would be too expensive. The library em-
ploys a hierarchical state partition scheme to transfer state
eÆciently. When a replica is fetching state, it recurses down
a hierarchy of meta-data to determine which partitions are

out-of-date. When it reaches the leaves of the hierarchy
(which are the abstract objects), it fetches only the objects
that are corrupt or out-of-date.
As mentioned earlier, to implement checkpointing and

state transfer eÆciently, we require that the abstract state
be encoded as an array of objects, where the objects can
have variable size. This representation allows state trans-
fer to be done on just those objects that are out-of-date or
corrupt.
The current implementation of the BASE library requires

the array to have a �xed size. This limits exibility in the
de�nition of encodings for the abstract state but it is not
an intrinsic problem. The maximum number of entries in
the array can be set to an extremely large value without
allocating extra space for the portion of the array that is
not used, and without degrading the performance of state
transfer and checking.
To implement state transfer, each replica must provide the

library with two upcalls, which implement the abstraction
function and one of its inverses. These upcalls do not convert
the entire state each time they are called because this would
be too expensive. Instead, they perform conversions at the
granularity of an object in the abstract state array. The
abstraction function is implemented by get obj. It receives
an object index i, allocates a bu�er, obtains the value of the
abstract object with index i, and places that value in the
bu�er. It returns the size for that object and a pointer to
the bu�er.
The inverse abstraction function receives a new abstract

state value and updates the concrete state to match this
argument. This function should also work incrementally to
achieve good performance. But it cannot process just one
abstract object per invocation because there may be invari-
ants on the abstract state that create dependencies between
objects. For example, suppose that an object in the abstract
state of a �le system can be either a �le or a directory. If
a slow replica misses the operations that create a directory,
d, and a �le, f , in d, it has to fetch the abstract objects
corresponding to d and f from the others. Then, it invokes
the inverse abstraction function to bring its concrete state
up-to-date. If f is the argument to the �rst invocation and
d is the argument to the second, it is impossible for the �rst
invocation to update the concrete state because it has no
information on where to create the �le. The reverse order
does not work either because the �rst invocation creates a
dangling reference in d.
To solve this problem, put objs receives a vector of ob-

jects with the corresponding sizes and indices in the abstract
state array. The library guarantees that this upcall is in-
voked with an argument that brings the abstract state of
the replica to a consistent value (i.e., the value of a valid
checkpoint).
Each time the execute upcall is about to modify an ob-

ject in the abstract state it is required to invoke a modify
procedure, which is supplied by the library, passing the ob-
ject index as argument. This is used to implement copy-
on-write to create checkpoints incrementally: the library
invokes get obj with the appropriate index and keeps the
copy of the object until the corresponding checkpoint can
be discarded.
BASE implements a form of state machine replication that

requires replicas to behave deterministically. Our method-
ology uses abstraction to hide most of the non-determinism

in the implementations it reuses. However, many services
involve forms of non-determinism that cannot be hidden by
abstraction. For instance, in the case of the NFS service, the
time-last-modi�ed for each �le is set by reading the server's
local clock. If this were done independently at each replica,
the states of the replicas would diverge.
Instead, we allow the primary replica to propose values for

non-deterministic choices by providing the propose value
upcall, which is only invoked at the primary. (Like BFT [7],
BASE uses a primary that proposes sequence numbers for
requests and backups that check on the primary and trigger
view changes if it misbehaves.) The call receives the client
request and the sequence number for that request; it selects
a non-deterministic value and puts it in non-det. This value
is going to be supplied as an argument of the execute upcall
to all replicas.
The protocol implemented by the BASE library prevents

a faulty primary from causing replica state to diverge by
sending di�erent values to di�erent backups. However, a
faulty primary might send the same, incorrect value to all
backups, subverting the system's desired behavior. The so-
lution to this problem is to have each replica implement
a check value function that validates the choice of non-
deterministic values that was made by the primary. If 1=3
or more non-faulty replicas reject a value proposed by a
faulty primary, the request will not be executed and the
view change mechanism will cause the primary to be re-
placed soon after.
Proactive recovery periodically restarts each replica from

a correct, up-to-date checkpoint of the abstract state that
is obtained from the other replicas. Recoveries are triggered
by a watchdog timer. When a replica is recovered, it reboots
after saving to disk the abstract service state, and the repli-
cation protocol state, which includes abstract objects that
were copied by the incremental checkpointing mechanism.
The library could invoke get obj repeatedly to save a

complete copy of the abstract state to disk but this would be
expensive. It is suÆcient to ensure that the current concrete
state is on disk and to save a small amount of additional in-
formation to enable reconstruction of the conformance rep-
resentation when the replica restarts. Since the library does
not have access to this representation, the service state is
saved to a �le by an additional upcall, shutdown, that is im-
plemented by the conformance wrapper. The conformance
wrapper also implements a restart upcall that is invoked
to reconstruct the conformance representation from the �le
saved by shutdown and from the concrete state of the ser-
vice. This enables the replica to compute the abstract state
by calling get obj.
In some cases, the information in the conformance repre-

sentation is volatile; it is no longer valid when the replica
restarts. In this case, it is necessary to augment it with infor-
mation that is persistent and allows restart to reconstruct
the conformance representation after a reboot.
After calling restart, the library uses the hierarchical

state transfer mechanism to compare the value of the ab-
stract state of the replica with the abstract state values
stored by the other replicas. It computes cryptographic
hashes of the abstract objects and compares them with the
hashes in the state partition tree to check if the objects are
corrupt. The state partition tree also contains the sequence
number of the last checkpoint when each object was modi-
�ed [8]. The replica uses this information to check which ob-

jects are out-of-date without having to compute their hash.
These checks are performed in parallel with fetches of ob-
jects that have already been determined to be out-of-date or
corrupt. This is eÆcient: the replica fetches only the value
of objects that are out-of-date or corrupt. We use a single
threaded implementation with event queues representing ob-
jects to fetch and objects to check. Checks are performed
while waiting for replies to fetch requests. The replica does
not execute operations until it completes the recovery.
The object values fetched by the replica could be supplied

to put objs to update the concrete state, but the concrete
state might still be corrupt. For example, an implementa-
tion may have a memory leak and simply calling put objs

will not free unreferenced memory. In fact, implementations
will not typically o�er an interface that can be used to �x
all corrupt data structures in their concrete state. There-
fore, it is better to restart the implementation from a clean
initial concrete state and use the abstract state to bring it
up-to-date.

execute
propose_value/check_value
get_obj/put_obj
shutdown/restart

Client

BASE
Client

BASE
Replica

Conf.
Wrapper

Original
Implementation

invoke

BASE
Protocol

modify

Figure 2: BASE function calls and upcalls

A global view of all BASE functions and upcalls that are
invoked is shown in Figure 2.

3. EXAMPLES
This section uses two examples to illustrate the methodol-

ogy: a replicated �le system and an object oriented database.

3.1 File System
The �le system is based on the NFS protocol [27]. Its

replicas can run di�erent operating systems and �le system
implementations.

3.1.1 Abstract Specification
The common abstract speci�cation is based on the spec-

i�cation of the NFS protocol [27]. The abstract �le service
state consists of a �xed-size array of pairs containing an ob-
ject and a generation number. Each object has a unique
identi�er, oid, which is obtained by concatenating its in-
dex in the array and its generation number. The generation
number is incremented every time the entry is assigned to
a new object. There are four types of objects: �les, whose
data is a byte array; directories, whose data is a sequence
of <name, oid> pairs ordered lexicographically by name;
symbolic links, whose data is a small character string; and
special null objects, which indicate that an entry is free.
All non-null objects have meta-data, which includes the at-
tributes in the NFS fattr structure, and the index (in the
array) of its parent directory. Each entry in the array is
encoded using XDR [26]. The object with index 0 is a direc-

Andrew
benchmark

kernel NFS client

relay

replication
library

replica 1

unmodified NFS daemon 1

replication
library

conformance
wrapper

state
conversion

unmodified NFS daemon n

replication
library

conformance
wrapper

state
conversion

replica n

client

Figure 3: Software architecture.

tory object that corresponds to the root of the �le system
tree that was mounted.
Keeping a pointer to the parent directory is redundant,

since we can derive this information by scanning the rest of
the abstract state. But it simpli�es the inverse abstraction
function and the recovery algorithm, as we will explain later.
The operations in the common speci�cation are those de-

�ned by the NFS protocol. There are operations to read and
write each type of non-null object. The �le handles used by
the clients are the oids of the corresponding objects. To
ensure deterministic behavior, we require that oids be as-
signed deterministically, and that directory entries returned
to a client be ordered lexicographically.
The abstraction hides many details; the allocation of �le

blocks, the representation of large �les and directories, and
the persistent storage medium and how it is accessed. This
is desirable for simplicity and performance. Additionally,
abstracting from implementation details like resource allo-
cation improves resilience to sofware faults due to aging be-
cause proactive recovery can �x resource leaks.

3.1.2 Conformance Wrapper
The conformance wrapper for the �le service processes

NFS protocol operations and interacts with an o�-the-shelf
�le system implementation using the NFS protocol as illus-
trated in Figure 3. A �le system exported by the replicated
�le service is mounted on the client machine like any regular
NFS �le system. Application processes run unmodi�ed and
interact with the mounted �le system through the NFS client
in the kernel. We rely on user level relay processes to me-
diate communication between the standard NFS client and
the replicas. A relay receives NFS protocol requests, calls
the invoke procedure of our replication library, and sends
the result back to the NFS client. The replication library
invokes the execute procedure implemented by the confor-
mance wrapper to run each NFS request. This architecture
is similar to BFS [7].
The conformance representation consists of an array that

corresponds to the one in the abstract state but it does not
store copies of the objects; instead each array entry con-
tains the type of object, the generation number, and for
non-empty entries it also contains the �le handle assigned
to the object by the underlying NFS server, the value of
the timestamps in the object's abstract meta-data, and the
index of the parent directory. The representation also con-
tains a map from �le handles to oids to aid in processing

replies eÆciently.
The wrapper processes each NFS request received from

a client as follows. It translates the �le handles in the re-
quest, which encode oids, into the corresponding NFS server
�le handles. Then it sends the modi�ed request to the un-
derlying NFS server. The server processes the request and
returns a reply.
The wrapper parses the reply and updates the confor-

mance representation. If the operation created a new object,
the wrapper allocates a new entry in the array in the con-
formance representation, increments the generation number,
and updates the entry to contain the �le handle assigned to
the object by the NFS server and the index of the parent
directory. If any object is deleted, the wrapper marks its
entry in the array free. In both cases, the reverse map from
�le handles to oids is updated.
The wrapper must also update the abstract timestamps

in the array entries corresponding to objects that were ac-
cessed. For this, it uses the value for the current clock chosen
by the primary using the propose value upcall in order to
prevent the states of the replicas from diverging. However,
if a faulty primary chooses an incorrect value the system
could have an incorrect behavior. For example, the primary
might always propose the same value for the current time;
this would cause all replicas to update the modi�cation time
to the same value that it previously held and therefore, ac-
cording to the cache consistency protocol implemented by
most NFS clients [3], cause the clients to erroneously not
invalidate their cached data, thus leading to inconsistent
values at the caches of di�erent clients. The solution to this
problem is to have each replica validate the choice for the
current timestamp using the check value function. In this
case, this function must guarantee that the proposed times-
tamp is not too far from the replica's own clock value, and
that the timestamps produced by the primary are monoton-
ically increasing.
Finally, the wrapper returns a modi�ed reply to the client,

using the map to translate �le handles to oids and replacing
the concrete timestamp values by the abstract ones.
When handling readdir calls the wrapper reads the entire

directory and sorts it lexicographically to ensure the client
receives identical replies from all replicas.

3.1.3 State Conversions
The abstraction function in the �le service is implemented

as follows. For each �le system object, it uses the �le handle
stored in the conformance representation to invoke the NFS
server to obtain the data and meta-data for the object. Then
it replaces the concrete timestamp values by the abstract
ones, converts the �le handles in directory entries to oids,
and sorts the directories lexicographically.
Figure 4 shows how the concrete state and the confor-

mance representation are combined to form the abstract
state for a particular example. Note that the attributes
in the concrete state are combined with the timestamps in
the conformance representation to form the attributes in the
abstract state. Also note that the contents of the �les and
directories are not stored by the conformance representation,
but only in the concrete state.
The pseudocode for the inverse abstraction function in the

�le service is shown in Figure 5. This function receives an
array with the indices of the objects that need to be updated
and the new values for those objects. It scans each entry in

Type
Gen. #
Parent

Attrs

Data

0

FILE
1
2

DIR
1
0

FILE
1
0

DIR
1
-1

t1

other attrs

<f1,1>
<d1,2>

FREE
0

1 2 3 4 …

…… … …

<f2,3>

Type
Gen. #
Parent
fhandle
tstamps

DIR
1
-1
h1
t1

FILE
1
0

h2
t2

DIR
1
0

h3
t3

FREE
0

…

…

0 1 2 3

FILE
1
2

h4
t4

root

f1

f2

d1

Abstract State:

Conformance Representation: Concrete State:

4

Figure 4: Example of the abstraction function

the array to determine the type of the new object, and acts
accordingly.
If the new object is a �le or a symbolic link, it starts

by calling the update directory function, passing the new
object's parent directory index as an argument. This will
cause the object's parent directory to be reconstructed if
needed, and the corresponding object in the underlying �le
system will be created if it did not exist already. Then it can
update the object's entry in the conformance representation,
and issue a setattr and a write to update the �le's meta-
data and data in the concrete state. For symbolic links, it
is suÆcient to update their meta-data.

function put objs(in modi�ed object array)
for each entry 2 modi�ed object array do

if new object's type = �le or symbolic link then

update directory(new object's parent directory index)
update object's meta-data in the conformance representation
set �le attributes
write �le's new contents or update link's target

else if new object's type = directory then

update directory(this object's index)
update object's meta-data in the conformance representation

else if new object's type = free entry then

update object's type in the conformance representation

function update directory(in directory's index)
if (directory has already been updated or
directory has not changed) then
do nothing

else

update directory(new directory's parent directory index)
read directory's old contents using NFS calls
for each entry in old directory do

if entry is not in new directory then

remove entry using NFS call
else if entry is in new directory but type is wrong then

remove entry
for each entry in new directory do

if entry is not in old directory then

create entry using NFS call

Figure 5: Inverse abstraction function

When the new object is a directory, it is suÆcient to in-

voke update directory passing its own index as an argu-
ment, and then updating the appropriate entry in the con-
formance representation.
Finally, if the new object is a free entry it updates the

conformance representation to reect the new object's type
and generation number. If the entry was not previously
free, it must also remove the mapping from the �le handle
that was stored in that entry to its oid. We do not have to
update the parent directory of the old object, since it must
have changed and will be processed eventually.
The update directory function can be summarized as

follows. If the directory that is being updated has already
been updated or is not in the array of objects that need to be
updated then the function performs no action. Otherwise it
calls itself recursively passing the index of the parent direc-
tory (taken from the new object) as an argument. Then, it
looks up the contents of the directory by issuing a readdir
call. It scans the entries in the old state to remove the ones
that are no longer present in the abstract state (or have a
di�erent type) and �nally scans the entries in the new ab-
stract state and creates the ones that are not present in the
old state. When an entry is created or deleted, the confor-
mance representation is updated to reect this.

3.1.4 Proactive Recovery
After a recovery, a replica must be able to restore its ab-

stract state. This could be done by saving the entire abstract
state to disk before the recovery, but that would be very ex-
pensive. Instead we want to save only the metadata (e.g.,
the oids and the timestamps). But to do this we need a way
of relating the oids to the �les in the concrete �le system
state. This cannot be done using �le handles since they can
change when the NFS server restarts. However, the NFS
speci�cation states that each object is uniquely identi�ed
by a pair of meta-data attributes: <fsid,�leid>. We solve
the problem by adding another component to the confor-
mance representation: a map from <fsid,�leid> pairs to the
corresponding oids. The shutdown method saves this map
(as well as the metadata maintained by the conformance
representation for each �le) to disk.
After rebooting, the restart method performs the follow-

ing steps. It reads the map from disk; performs a new mount
RPC call, thus obtaining the �le handle for the �le system
root; and places null �le handles in all the other entries in
the conformance representation that correspond to all the
other objects, indicating that we do not know the new �le
handles for those objects yet. It then initializes the other
entries using the metadata that was stored by shutdown.
Then the replication library runs the protocol to bring

the abstract state of the replica up to date. As part of this
process, it updates the digests in its partition tree using in-
formation collected from the other replicas and calls get obj
on each object to check if it has the correct digest. Corrupt
or out-of-date objects are fetched from the other replicas.
The call to get obj determines the new NFS �le handle if

necessary. In this case, it goes up the directory tree (using
the parent index in the conformance representation) until
it �nds a directory whose new �le handle is already known.
Then it issues a readdir to learn the names and �leids of the
entries in the directory, followed by a lookup call for each
one of those entries to obtain their NFS �le handles; these
handles are then stored in the position that is determined
by the <fsid,�leid> to oid map. Then it proceeds down the

path of the object whose �le handle is being reconstructed,
computing not only the �le handles of the directories in that
path, but also those of all their siblings in the �le system
tree.
When walking up the directory tree using the parent in-

dices, we need to detect loops so that the recovery function
will not enter an in�nite loop due to erroneous information
stored by the replica during shutdown.
Currently, we restart the NFS server in the same �le sys-

tem and update its state with the objects fetched from other
replicas. We plan to change the implementation to start an
NFS server on a second empty disk and bring it up-to-date
incrementally as we obtain the values of the abstract ob-
jects. This has the advantage of improving fault tolerance
as discussed in Section 2. Additionally, it can improve disk
locality by clustering blocks from the same �le and �les that
are in the same directory.

3.2 Object-Oriented Database
We have also applied our methodology to replicate the

servers in the Thor object-oriented database [18]. In this
example, all the replicas run the same server implemen-
tation. The example is interesting because the service is
more complex than NFS, and the server implementation
is multithreaded and exhibits a signi�cant degree of non-
determinism. The methodology enabled reuse of the existing
server code and could enable software rejuvenation through
proactive recovery. We begin by giving a brief overview of
Thor and then describe how the methodology was applied
in this example. A more detailed description can be found
in [32].

3.2.1 System Overview
Thor [18] provides a persistent object store that can be

shared by applications running concurrently at di�erent lo-
cations. It guarantees type-safe sharing by ensuring that
all objects are used in accordance with their types. Ad-
ditionally, it provides atomic transactions [14] to guarantee
strong consistency in the presence of concurrent accesses and
crashes.
Thor is implemented as a client/server system in which

servers provide persistent storage for objects and applica-
tions run at clients on cached copies of persistent objects.
Servers store objects in pages on disk and also cache these

pages in main memory. Each object stored by a server
is identi�ed by a 32-bit oref, which contains a pagenum
that identi�es the page where the object is stored and an
onum that identi�es the object within the page. Objects
are uniquely identi�ed by a pair containing the object oref
and the identi�er of the server that stores the object.
Each client maintains a cache of objects retrieved from

servers in main memory [6]. Applications running at the
client invoke methods on these cached objects. When an
application requests an object that is not cached, the client
fetches the page that contains the object from the corre-
sponding server.
Thor uses an optimistic concurrency control algorithm [1]

to serialize [14] transactions. Clients run transactions on
cached copies of objects assuming that these copies are up-
to-date but record orefs of objects read or modi�ed by the
transaction. To commit a transaction, the client sends a
commit request to the server that stores these objects. (Thor
uses a two-phase commit protocol [14] when transactions ac-

cess objects at multiple servers but we will not describe this
case to simplify the presentation.) The commit request in-
cludes a transaction timestamp assigned by the client, the
orefs it recorded, and the new values of modi�ed objects.
The server attempts to serialize transactions in order of

increasing timestamps. To determine if a transaction can
commit, the server uses a validation queue (VQ) and invalid
sets (ISs). The VQ contains an entry for every transac-
tion that committed recently. Each entry contains the orefs
of objects that were read or modi�ed by the transaction,
and the transaction's timestamp. There is an IS for each
active client that lists orefs of objects with stale copies in
that client's cache. A transaction can commit if none of the
objects it accessed is in the corresponding IS, if it did not
modify an object that was read by a committed transaction
in the VQ with a later timestamp, and if it did not read an
object that was modi�ed by a transaction in the VQ with a
later timestamp. If the transaction commits, its e�ects are
recorded persistently; otherwise, it has no e�ect. In either
case, the server informs the client of its decision.
The server updates the ISs of clients when a transaction

commits. It adds orefs of objects modi�ed by the transac-
tion to the ISs of clients that are caching those objects. It
computes this set of clients using a cached-pages directory
that maps each page in the server to the set of clients that
may have cached copies of that page. The server adds clients
to the directory when they fetch pages and clients piggyback
information about pages that they have discarded in fetch
and commit requests that they send to the server. Simi-
larly, the servers piggyback invalidation messages on fetch
and commit replies to inform clients of objects in their IS.
An object is removed from a client's IS when the server
receives an acknowledgement for the invalidation. These ac-
knowledgements are also piggybacked on other messages.
When a transaction commits, clients send new versions

of modi�ed objects but not their containing pages. These
objects are stored by the server in a modi�ed object bu�er
(MOB) [12] that allows the server to defer installing these
objects to their pages on disk. The modi�cations are in-
stalled to disk lazily by a background usher thread when
the MOB is almost full to make room for new modi�cations.

3.2.2 Abstract Specification
We applied our methodology to replicate Thor servers.

The abstract speci�cation models the behavior of these serv-
ers as seen by clients. The interface exported by servers has
four main operations: start session and end session, which
are used by clients to start and end sessions with a server;
and fetch and commit, which were described before. In-
validations are piggybacked on fetch and commit replies,
and invalidation acknowledgments and noti�cations of page
evictions from client caches are piggybacked on fetch and
commit requests.
The abstract state of the service is de�ned as follows. The

array of abstract objects is partitioned into four �xed-size
areas.
Database pages. Each entry in this area corresponds to a
page in the database. The value of the entry with index i is
equal to the value of the page with pagenum i.
Validation Queue. Entries in this area correspond to en-
tries in the VQ. The value of each entry contains the times-
tamp that was assigned to the corresponding transaction (or
a null timestamp for free entries), the status of the transac-

tion, an array with the orefs of objects read by the transac-
tion, and an array with the orefs of objects written by the
transaction. When a transaction commits, it is assigned the
free entry with the lowest index. When there are no free en-
tries, the entry of the transaction with the lowest timestamp
t is discarded to free an entry for a new transaction and any
transaction that attempts to commit with timestamp lower
than t is aborted [18].
Note that entries are not ordered by timestamp because

this could lead to ineÆcient checkpoint computation and
state transfer. Inserting entries in the middle of an ordered
sequence could require shifting a large number of entries.
This would increase the cost of our incremental checkpoint-
ing technique and could increase the amount of data sent
during state transfers.
Invalid sets. Each entry in this area corresponds to the
invalid set of an active client. The value of an entry contains
the client identi�er (or a null identi�er for free entries), and
an array with the orefs of invalid objects. When a new client
invokes start session, it is assigned an abstract client number
that corresponds to the index of its entry in this area. The
entry is discarded when the client invokes end session.
Cached-pages directory. There is one entry in this area
per database page. The index of an entry is equal to the
pagenum of the corresponding page minus the starting index
for the area. The value of an entry is an array with the
abstract numbers of clients that cache the page.
The abstraction hides the details of how the page cache

and the MOB are managed at the servers. This allows dif-
ferent replicas to cache di�erent pages, or install objects to
disk pages at di�erent times without having their abstract
states diverge.

3.2.3 Conformance Wrapper
Thor servers illustrate one of the problems that make ap-

plying our methodology harder. The external interface they
o�er is too narrow to implement state conversion functions
that are both simple and eÆcient. For example, the inter-
face between clients and servers does not allow reading or
writing the validation queue, the invalid sets, or the cached-
pages directory.
We could solve this problem by shadowing this data in the

wrapper but this is not practical because it would require
reimplementing the concurrency control algorithm. Instead,
we implemented the state conversion functions using inter-
nal APIs. This was possible because we had access to the
server source code. We used these internal APIs as black
boxes; we did not add new operations or change existing
operations. These internal APIs were used only to imple-
ment the state conversion functions. They were not used to
de�ne the abstract speci�cation. This is important because
we want this speci�cation to abstract as many implementa-
tion details as possible.
We also replaced the communication library used between

servers and clients by one with the same interface that calls
the BASE library. This avoids the need for interposing client
and server proxies, which was the technique we used in the
�le system example.
The conformance wrapper maintains only two data struc-

tures: the VQ array and the client array, which are used
in the state conversion functions as we will describe next.
Each entry in the VQ array corresponds to the entry with
the same index in the VQ area of the abstract state, and

it contains the transaction timestamp in that abstract en-
try. When a transaction commits, the wrapper assigns it an
entry in the VQ array (as described in the abstract speci�-
cation) and stores its timestamp there.
The entries in the client array are used to map abstract

client numbers to the per-client data structures maintained
by Thor. They are updated by the wrapper when clients
start and end sessions with the server.
In Thor, transaction timestamps are assigned by clients.

The conformance wrapper rejects timestamps that deviate
more than a threshold from the time when the commit re-
quest is received. This is important to prevent faulty clients
from committing transactions with very large timestamps,
which could cause spurious aborts. The conformance wrap-
per uses the propose value and check value upcalls o�ered
by the BASE library for replicas to agree on the time when
the commit request is received. Replicas use the agreed upon
value to decide whether to reject or accept the proposed
timestamp. This ensures that all correct replicas reach the
same decision.
Besides maintaining these two data structures and check-

ing timestamps, the wrapper simply invokes the operations
exported by the Thor server after calling modify to inform
the BASE library of which abstract objects are about to be
modi�ed.

3.2.4 State Conversions
The get obj upcall receives the index of an abstract ob-

ject and returns a pointer to a bu�er containing the cur-
rent value of that abstract object. The implementation of
get obj in this example uses the index to determine which
area the abstract object belongs to. Then, it computes the
value of the abstract object using the procedure that corre-
sponds to the object's area:
Database pages. If the abstract object is a database page,
get obj retrieves a copy of the page from disk (or from the
page cache) and applies any pending modi�cations to the
page that are in the MOB. This is the current value of the
page that is returned.
Validation queue. If the object represents a validation
queue entry, get obj retrieves the timestamp that corre-
sponds to this entry from the VQ array in the conformance
representation. Then, it uses the timestamp to fetch the
entry from the VQ maintained by the server, and copies the
sets with orefs of objects read or modi�ed by the transaction
to compose the value of the abstract object.
Invalid sets. If the object represents an invalid set for
a client with number c, get obj uses the client array in
the conformance representation to map c to the client data
structure maintained by the server for the corresponding
client. Then, it retrieves the client invalid set from this data
structure and uses it to compose the abstract object value.
Cached-pages directory. In this case, get obj deter-
mines the pagenum of the requested abstract object by com-
puting the o�set to the beginning of the area. Then, it uses
the pagenum to lookup the information to compose the ab-
stract object value in the cached-pages directory maintained
by the server.
The put objs upcall receives an array with new values for

abstract objects and updates the concrete state to match
these values. It iterates over the abstract object values and
uses the object indices to determine which of the procedures
below to execute.

Database pages. To update a concrete database page,
put objs removes any modi�cations in the MOB for that
page to ensure that the new page value will not be overwrit-
ten with old modi�cations. Then, it places a page matching
the new abstract value in the server's cache and marks it as
dirty.
Validation queue, invalid sets and cached-pages di-

rectory. If the relevant server data structure already con-
tains an entry corresponding to a new abstract object value,
the function just updates the entry according to the new
value. Otherwise, it must delete the entry from the server
data structure if the new abstract object value describes a
non-existent entry, or create the entry if it did not previ-
ously exist and �ll in the values according to the new ab-
stract value. The conformance representation is updated
accordingly.

4. EVALUATION
Our replication technique must achieve two goals to be

successful: it must have low overhead, and the code of the
conformance wrapper and the state conversion functions
must be simple. It is important for the code to be sim-
ple to reduce the likelihood of introducing more errors and
to keep the monetary cost of using our technique low. This
section evaluates the extent to which both example applica-
tions meet each of these goals.

4.1 File System Overhead
This section presents results of experiments that compare

the performance of our replicated �le system with the o�-
the-shelf, unreplicated NFS implementations that it wraps.

4.1.1 Experimental Setup
Our technique has three advantages: reuse of existing

code, software rejuvenation using proactive recovery, and
opportunistic N-version programming. We present results of
experiments to measure the overhead in systems that bene-
�t from di�erent combinations of these advantages. We ran
experiments with and without proactive recovery in a ho-
mogeneous setup, where all replicas ran the same operating
system, and in a heterogenous setup, where each replica ran
a di�erent operating system.
All experiments ran with four replicas and one client. Four

replicas can tolerate one Byzantine fault; we expect this reli-
ability level to suÆce for most applications. Experiments to
evaluate the performance of the replication algorithm with
more clients and replicas appear in [5].
In the homogeneous setup, clients and replicas ran on

Dell Precision 410 workstations with Linux 2.2.16-3 (unipro-
cessor). These workstations have a 600 MHz Pentium III
processor, 512 MB of memory, and a Quantum Atlas 10K
18WLS disk. All machines were connected by a 100 Mb/s
switched Ethernet and had 3Com 3C905B interface cards.
The switch was an Extreme Networks Summit48 V4.1. The
experiments ran on an isolated network.
The heterogeneous setup used the same hardware setup

but some replicas ran di�erent operating systems. The client
and one of the replicas ran Linux as in the homogeneous
setup. The other replicas ran di�erent operating systems:
one ran Solaris 8 1/01; another ran OpenBSD 2.8; and the
last one ran FreeBSD 4.0.
All experiments ran the modi�ed Andrew benchmark [15,

30], which emulates a software development workload. It has

�ve phases: (1) creates subdirectories recursively; (2) copies
a source tree; (3) examines the status of all the �les in the
tree without examining their data; (4) examines every byte
of data in all the �les; and (5) compiles and links the �les.
They ran the scaled up version of the benchmark described
in [8] where phase 1 and 2 create n copies of the source tree,
and the other phases operate in all these copies. We ran
a version of Andrew with n equal to 100, Andrew100, that
creates approximately 200 MB of data and another with n
equal to 500, Andrew500, that creates approximately 1 GB
of data. Andrew100 �ts in memory at both the client and
the replicas but Andrew500 does not.
The benchmark ran at the client machine using the stan-

dard NFS client implementation in the Linux kernel with
the following mount options: UDP transport, 4096-byte read
and write bu�ers, allowing write-back client caching, and
allowing attribute caching. All the experiments report the
average of three runs of the benchmark and the standard
deviation was always below 7% of the reported values.

4.1.2 Homogeneous Results
Tables 1 and 2 present the results for Andrew100 and

Andrew500 in the homogeneous setup with no proactive re-
covery. They compare the performance of our replicated �le
system, BASEFS, with the standard, unreplicated NFS im-
plementation in Linux with Ext2fs at the server, NFS-std.
In these experiments, BASEFS is also implemented on top
of a Linux NFS server with Ext2fs at each replica.

phase BASEFS NFS-std

1 0.9 0.5
2 49.2 27.4
3 45.4 39.2
4 44.7 36.5
5 287.3 234.7

total 427.65 338.3

Table 1: Andrew100: elapsed time in seconds

The results show that the overhead introduced by our
replication technique is low: BASEFS takes only 26% longer
than NFS-std to run Andrew100 and 28% longer to run An-
drew500. The overhead is di�erent for the di�erent phases
mostly due to variations in the amount of time the client
spends computing between issuing NFS requests.
There are two main sources of overhead: the cost of run-

ning the Byzantine-fault-tolerant replication protocol, and
the cost of abstraction. The latter includes the time spent
running the conformance wrapper and the time spent run-
ning the abstraction function to compute checkpoints of the
abstract �le system state. We estimate that the Byzantine
fault tolerance protocol adds approximately 15% of overhead
relative to NFS-std in Andrew100 and 20% in Andrew500.
This estimate is based on the overhead of BFS relative to
NO-REP for Andrew100 and Andrew500 that was reported
in [8]. We expect this estimate to be fairly accurate: BFS is
very similar to BASEFS except that it does not use abstrac-
tion, and NO-REP is identical to BFS except that it is not
replicated. The remaining overhead of 11% relative to NFS-
std in Andrew100 and 8% in Andrew500 can be attributed
to abstraction.
We also ran Andrew100 and Andrew500 with proactive

recovery. The results, which are labeled BASEFS-PR, are

phase BASEFS NFS-std

1 5.0 2.4
2 248.2 137.6
3 231.5 199.2
4 298.5 238.1
5 1545.5 1247.1

total 2328.7 1824.4

Table 2: Andrew500: elapsed time in seconds

shown in Table 3. The results for Andrew100 were obtained
by recovering replicas round robin with a new recovery start-
ing every 80 seconds, and reboots were simulated by sleeping
30 seconds1. We obtained the results for Andrew500 in the
same way but in this case a new recovery was started ev-
ery 250 seconds. This leads to a window of vulnerability of
approximately 6 minutes for Andrew100 and 17 minutes for
Andrew500; that is, the system will work correctly as long as
fewer than 1/3 of the replicas fail in a correlated way within
any time window of size 6 (or 17) minutes. The results show
that even with these very strong guarantees BASEFS is only
32% slower than NFS-std in Andrew100 and 31% slower in
Andrew500.

system Andrew100 Andrew500

BASEFS-PR 448.2 2385.1
BASEFS 427.65 2328.7
NFS-std 338.33 1824.4

Table 3: Andrew with proactive recovery: elapsed

time to run the benchmark in seconds.

Table 4 presents a breakdown of the time to complete
the slowest recovery in Andrew100 and Andrew500. Shut-
down accounts for the time to write the state of the replica-
tion library and the conformance representation to disk, and
restart is the time to read this information back. Fetch and
check is the time to rebuild the oid to �le handle mappings
in the conformance wrapper, to convert the state stored by
the NFS server to its abstract form and check it, and to fetch
out-of-date objects from other replicas. Fetching out-of-date
objects is done in parallel with converting and checking the
state.

Andrew100 Andrew500

shutdown 0.07 0.32
reboot 30.05 30.05
restart 0.18 0.97

fetch and check 18.28 141.37

total 48.58 172.71

Table 4: Andrew: maximum time to complete a

recovery in seconds.

The recovery time in Andrew100 is dominated by the time
to reboot but as the state size increases reading, convert-
ing, and checking the state becomes the dominant cost; this
accounts for 141 seconds in Andrew500 (82% of the total
recovery time). Scaling to larger states is an issue but we

1This reboot time is based on the results obtained by the
LinuxBIOS project [23]. They claim to be able to reboot
Linux in 35 s by replacing the BIOS with Linux.

could use the techniques suggested in [8] that make the cost
of checking proportional to the number of objects modi�ed
in a time period rather than to the total number of objects
in the state.
As mentioned, we would like our implementation of proac-

tive recovery to start an NFS server on a second empty disk
with a clean �le system to improve the range of faults that
can be tolerated. Extending our implementation in this way
should not a�ect the performance of the recovery signi�-
cantly. We would write each abstract object to the new
�le system asynchronously right after checking it. Since the
value of the abstract object is already in memory at this
point and it is written to a di�erent disk, the additional
overhead should be minimal.

4.1.3 Heterogeneous Results
Table 5 presents results for Andrew100 with and without

proactive recovery in the heterogenous setup. In this ex-
periment, each BASEFS replica runs a di�erent operating
system with a di�erent NFS and �le system implementation.
The table also presents results for the standard NFS imple-
mentation in each operating system without replication.

system elapsed time

BASEFS-PR 1950.6

BASEFS 1662.2

OpenBSD 1599.1
Solaris 1009.2
FreeBSD 848.4
Linux 338.3

Table 5: Andrew100 heterogeneous: elapsed time in

seconds

The overhead of BASEFS in this experiment varies from
4% relative to the slowest replica (OpenBSD) to 391% rela-
tive to the fastest replica (Linux). The replica running Linux
is much faster than all the others because Linux does not en-
sure stability of modi�ed data and meta-data before replying
to the client as required by the NFS protocol. The overhead
relative to OpenBSD is low because BASEFS only requires
a quorum with 3 replicas, which must include the primary,
to complete operations. These results were obtained with
the primary replica in the machine running Linux. There-
fore, BASEFS does not need to wait for the slowest replica
to complete operations. However, this replica slows down
the others because it gets out-of-date frequently and initi-
ates state transfers. This explains why the overhead relative
to the third fastest replica (Solaris) is higher than in the ho-
mogeneous case.
We also ran BASEFS with proactive recoveries in the het-

erogeneous setup. We recovered a new replica every 425
seconds and reboots were simulated by sleeping 30 seconds.
In this case, the overhead varies from 22% relative to the
slowest replica to 477% relative to the fastest replica.
The overhead of BASEFS-PR relative to BASEFS with-

out proactive recovery is higher in the heterogeneous setup
than in the homogeneous setup. This happens because pro-
active recovery causes the slowest replica to become the pri-
mary periodically. During these periods the system must
wait for the slowest replica to complete operations.

4.2 Object-Oriented Database Overhead
This section presents results of experiments to measure

the overhead of our replicated implementation of Thor rela-
tive to the original implementation of Thor without replica-
tion. To provide a conservative measurement, the version of
Thor without replication does not ensure stability of infor-
mation committed by a transaction. A real implementation
would save a transaction log to disk or use replication to
ensure stability as we do. In either case, the overhead intro-
duced by BASE would be lower.

4.2.1 Experimental Setup
We ran four replicas and one client in the homogeneous

setup described in Section 4.1. The experiments ran the
OO7 benchmark [4], which is intended to match the charac-
teristics of many di�erent CAD/CAM/CASE applications.
The OO7 database contains a tree of assembly objects, with
leaves pointing to three composite parts chosen randomly
from among 500 such objects. Each composite part con-
tains a graph of atomic parts linked by connection objects;
each atomic part has 3 outgoing connections. All our exper-
iments ran on the medium database, which has 200 atomic
parts per composite part.
The OO7 benchmark de�nes several database traversals;

these perform a depth-�rst traversal of the assembly tree
and execute an operation on the composite parts referenced
by the leaves of this tree. Traversals T1 and T6 are read-
only; T1 performs a depth-�rst traversal of the entire com-
posite part graph, while T6 reads only its root atomic part.
Traversals T2a and T2b are identical to T1 except that T2a
modi�es the root atomic part of the graph, while T2b mod-
i�es all the atomic parts. We ran each traversal in a single
transaction.
The objects are clustered into 4 KB pages in the database.

The database takes up 38 MB in our implementation. Each
server replica had a 20 MB cache (of which 16 MB were used
for the MOB); the client cache had 16MB. All the results we
report are for cold traversals: the client and server caches
were empty in the beginning of the traversals.

4.2.2 OO7 Results
The results in Figure 6 are for read-only traversals. We

measured elapsed times for T1 and T6 traversals of the
database, both in the original implementation, Thor, and
the version that is replicated with BASE, BASE-Thor. The
�gure shows the total time to run the transaction broken
into the time to run the traversal and the time to commit
the transaction.
BASE-Thor takes 39% more time to complete T1, and

29% more time to complete T6. The commit cost is a small
fraction of the total time in these experiments. Therefore,
most of the overhead is due to an increase in the cost to fetch
pages. The micro-benchmarks in [8] predict an overhead of
60% when fetching 4 KB pages with no computation at the
client or the replicas. The overhead here is lower because
the pages have to be read from the replicas' disks. Similarly,
the relative overhead is lower for traversal T6 because it
generates disk accesses with less locality. Thus, the average
time to read a disk page from the server disk is higher in
T6 than in T1. We expect a similar e�ect in more realistic
settings where the database does not �t in main memory at
either the server or the clients. In these settings, BASE will
have lower overhead because the cost of disk accesses will

0

5

10

15

20

T1 T6 T1 T6

Thor BASE-Thor

E
la

ps
ed

tim
e

(s
)

Commit
Traversal

Figure 6: OO7: Elapsed time, cold read-only traver-

sals

dominate performance.
Figure 7 shows elapsed times for read-write traversals. In

this case, BASE adds an overhead relative to the original
implementation of 38% in T2a and 45% in T2b. The traver-
sal times for T1, T2a, and T2b are almost identical because
these traversals are very similar. What is di�erent is the
time to commit the transactions. Traversal T2a modi�es
500 atomic parts whereas T2b modi�es 100000. Therefore,
the commit time is a signi�cant fraction of the total time
in traversal T2b but not in traversal T2a. BASE increases
the commit overhead signi�cantly due to the cost of main-
taining checkpoints. The overhead for read-write traversals
would be signi�cantly lower relative to a version of Thor
that ensured stability of transaction logs.

0

5

10

15

20

T2a T2b T2a T2b

Thor BASE-Thor

E
la

ps
ed

tim
e

(s
)

Commit
Traversal

Figure 7: Elapsed time, cold read-write traversals

4.3 Code Complexity
To implement the conformance wrapper and the state con-

version functions, it is necessary to write new code. It is
important for this code to be simple so that it is easy to
write and not likely to introduce new bugs. We measured
the number of semicolons in the code we wrote for the repli-
cated �le system and for the replicated database to evaluate
its complexity. Counting semicolons is better than counting
lines because it does not count comment and blank lines.
The code we wrote for the replicated �le system has a

total of 1105 semicolons with 624 in the conformance wrap-
per and 481 in the state conversion functions. Of the semi-
colons in the state conversion functions, only 45 are speci�c
to proactive recovery. The code of the conformance wrap-

per is trivial. It has 624 semi-colons only because there
are many NFS operations. The code of the state conver-
sion functions is slightly more complex because it involves
directory tree traversals with several special cases but it is
still rather simple. To put these numbers in perspective, the
number of semicolons in the code in the Linux 2.2.16 kernel
that is directly related with the �le system, NFS, and the
driver of our SCSI adapter is 17735. Furthermore, this rep-
resents only a small fraction of the total size of the operating
system; Linux 2.2.6 has 544442 semicolons including drivers
and 229095 semicolons without drivers.
The code we wrote for the replicated database has a total

of 658 semicolons with 345 in the conformance wrapper and
313 in the state conversion functions. To put these numbers
in perspective, the number of semicolons in the original Thor
code is 37055.

5. RELATED WORK
Our technique for software rejuvenation [16] is based on

the proactive recovery technique implemented in BFT [8].
But the use of abstraction allows us to tolerate software
errors due to aging that could not be tolerated in BFT, e.g.,
resource leaks in the service code. Additionally, it allows us
to combine proactive recovery with N-version Programming.
N-Version Programming [9] exploits design diversity to re-

duce common mode failures. It works as follows: N software
development teams produce di�erent implementations of the
same service speci�cation for the same customer; the di�er-
ent implementations are then run in parallel; and voting is
used to produce a common result. This technique has been
criticized for several reasons [13]: it increases development
and maintenance costs by a factor of N or more, and it adds
unacceptable time delays to the implementation. In general,
this is considered to be a powerful technique, but with lim-
ited usability since only a small subset of applications can
a�ord its cost.
BASE enables low cost N-version programming by reusing

existing implementations from di�erent vendors. Since each
implementation is developed for a large number of custom-
ers, there are signi�cant economies of scale that keep the de-
velopment, testing, and maintenance costs per customer low.
Additionally, the cost of writing the conformance wrappers
and state conversion functions is kept low by taking advan-
tage of existing interoperability standards. The end result is
that our technique will cost less and may actually be more
e�ective at reducing common mode failures because com-
petitive pressures will keep implementations from di�erent
vendors independent.
Recovery of faulty versions has been addressed in the

context of N-Version Programming [33, 36] but these ap-
proaches have su�ered from two problems. First, they are
ineÆcient and cannot scale to services with large state. Sec-
ond, they require detailed knowledge of each version, which
precludes our opportunistic N-Version programming tech-
nique. For example, Romanovsky [33] proposes a technique
where each version de�nes a conversion function from its
concrete state to an abstract state. But this abstract state is
based on what is common across the implementations of the
di�erent versions and the conversion functions have glass-
box access to each implementation.
Our technique improves on this by providing a very eÆ-

cient recovery mechanism and by treating each implementa-
tion as a black box| the state conversion functions use only

existing interfaces, which is important to allow the reuse of
existing implementations. Furthermore, we derive the ab-
stract state from an abstract behavioral speci�cation that
captures what is visible to the client succinctly; this leads
to better fault tolerance and eÆciency.
Several other systems have used wrapping techniques to

replicate existing components, e.g., [10, 22, 19, 2, 21, 24, 25].
Many of these systems have relied on standards like NFS or
CORBA [28] to simplify wrapping of existing implementa-
tions. For example, Eternal [24] is a commercial implemen-
tation of the new Fault Tolerant CORBA standard [29]. All
these systems assume benign faults except Immune [25].
There are signi�cant di�erences between these systems

and BASE. First, they assume that replicas run identical
implementations. They also assume that replicas are deter-
ministic or they resolve the non-determinism at a low level
of abstraction. For example, many resolve non-determinism
by having a primary run the operations and ship the re-
sulting state or a log with all non-deterministic events to
the backups (e.g., [2]). This does not work with Byzantine
faults, and replicas are more likely to fail at the same time
because they are forced to behave identically at a low level
of abstraction. Finally, these systems leave state transfer to
the application.
BASE uses abstraction to hide most non-determinism and

to enable replicas to run di�erent implementations. It also
o�ers an eÆcient mechanism for replicas to agree on non-
deterministic choices that works with Byzantine faults. This
is important when these choices are directly visible by clients,
e.g., timestamps. Additionally, we provide support for eÆ-
cient state transfer and for incremental conversion between
abstract and concrete state, which is important because
these are harder with Byzantine faults.
The work described in [34] uses wrappers to ensure that

an implementation satis�es an abstract speci�cation. These
wrappers use the speci�cation to check the correctness of
outputs generated by the implementation and contain faults.
They are not used to enable replication with di�erent or
non-deterministic implementations as in BASE.

6. CONCLUSION
Software errors are a major cause of outages and they are

increasingly exploited in malicious attacks to gain control
or deny access to important services. Byzantine fault toler-
ance allows replicated systems to mask some software errors
but it has been expensive to deploy. We have described a
replication technique, BASE, which uses abstraction to re-
duce the cost of deploying Byzantine fault tolerance and to
improve its ability to withstand attacks and mask software
errors.
BASE reduces cost because it enables reuse of o�-the-shelf

service implementations without modi�cations, and it im-
proves resilience to software errors by enabling opportunistic
N-version programming, and software rejuvenation through
proactive recovery.
Opportunistic N-version programming runs distinct, o�-

the-shelf implementations at each replica to reduce the prob-
ability of common mode failures. To apply this technique,
it is necessary to de�ne a common abstract behavioral spec-
i�cation for the service and to implement appropriate con-
version functions for the state, requests, and replies of each
implementation in order to make it behave according to the
common speci�cation. These tasks are greatly simpli�ed by

basing the common speci�cation on standards for the in-
teroperability of software from di�erent vendors; these stan-
dards appear to be common, e.g., ODBC [11], and NFS [27].
Opportunistic N-version programming improves on previous
N-version programming techniques by avoiding the high de-
velopment, testing, and maintenance costs without compro-
mising the quality of individual versions.
Additionally, we provide a mechanism to repair faulty

replicas. Proactive recovery allows the system to remain
available provided no more than 1=3 of the replicas become
faulty and corrupt the abstract state (in a correlated way)
within a window of vulnerability. Abstraction may enable
service availability even when more than 1=3 of the repli-
cas are faulty because it can hide corrupt items in concrete
states of faulty replicas.
The paper described BASEFS | a replicated NFS �le

system implemented using our technique. The conformance
wrapper and the state conversion functions in our proto-
type are simple, which suggests that they are unlikely to
introduce new bugs and that the monetary cost of using our
technique would be low.
We ran the Andrew benchmark to compare the perfor-

mance of our replicated �le system and the o�-the-shelf im-
plementations that it reuses. Our performance results indi-
cate that the overhead introduced by our technique is low;
BASEFS performs within 32% of the standard NFS imple-
mentations that it reuses.
We also used the methodology to build a Byzantine fault-

tolerant version of the Thor object-oriented database [18]
and made similar observations. In this case, the method-
ology enabled reuse of the existing database code, which is
non-deterministic.
As future work, it would be interesting to apply the BASE

technique to a relational database service by taking advan-
tage of the ODBC standard. Additionally, a library of map-
pings between abstract and concrete states for common data
structures would further simplify our technique.

7. ACKNOWLEDGMENTS
We would like to thank Chandrasekhar Boyapati, Jo~ao

Garcia, Ant Rowstron, Larry Peterson (our shepherd), and
the anonymous referees for their helpful comments on drafts
of this paper. We also thank Charles Blake, Benjie Chen,
Dorothy Curtis, Frank Dabek, Michael Ernst, Kevin Fu,
Frans Kaashoek, David Mazi�eres and Robert Morris for help
in providing an infrastructure to run some of the experi-
ments.

8. REFERENCES
[1] A. Adya, R. Gruber, B. Liskov, and U. Maheshwari.

EÆcient Optimistic Concurrency Control using
Loosely Synchronized Clocks. In Proceedings of ACM
SIGMOD International Conference on Management of
Data, pages 23{34, San Jose, CA, May 1995.

[2] T. Bressoud and F. Schneider. Hypervisor-based Fault
Tolerance. In Proceeding of the 15th ACM Symposium
on Operating System Principles, pages 1{11, Dec.
1995.

[3] B. Callaghan. NFS Illustrated. Addison-Wesley, 1999.

[4] M. J. Carey, D. J. DeWitt, and J. F. Naughton. The
OO7 Benchmark. In Proceedings of ACM SIGMOD

International Conference on Management of Data,
pages 12{21, Washington D.C., May 1993.

[5] M. Castro. Practical Byzantine Fault-Tolerance. PhD
thesis, Massachusetts Institute of Technology, 2000.

[6] M. Castro, A. Adya, B. Liskov, and A. Myers. HAC:
Hybrid Adaptive Caching for Distributed Storage
Systems. In Proceeding of the 16th ACM Symposium
on Operating System Principles, pages 102{115, St.
Malo, France, Oct. 1997.

[7] M. Castro and B. Liskov. Practical Byzantine fault
tolerance. In Proceedings of the Third Symposium on
Operating Systems Design and Implementation, New
Orleans, LA, Feb. 1999.

[8] M. Castro and B. Liskov. Proactive recovery in a
Byzantine-fault-tolerant system. In Proceedings of the
Fourth Symposium on Operating Systems Design and
Implementation, San Diego, CA, Oct. 2000.

[9] L. Chen and A. Avizienis. N-Version Programming: A
Fault-Tolerance Approach to Reliability of Software
Operation. In Fault Tolerant Computing, FTCS-8,
pages 3{9, 1978.

[10] E. Cooper. Replicated Distributed Programs. In
Proceedings of the 10th ACM Symposium on Operating
Systems Principles, pages 63{78, Dec. 1985.

[11] K. Geiger. Inside ODBC. Microsoft Press, 1995.

[12] S. Ghemawat. The Modi�ed Object Bu�er: a Storage
Management Technique for Object-Oriented
Databases. PhD thesis, Massachusetts Institute of
Technology, 1995.

[13] J. Gray and D. Siewiorek. High-availability computer
systems. IEEE Computer, 24(9):39{48, Sept. 1991.

[14] J. N. Gray and A. Reuter. Transaction Processing:
Concepts and Techniques. Morgan Kaufmann
Publishers Inc., 1993.

[15] J. Howard, M. Kazar, S. Menees, D. Nichols,
M. Satyanarayanan, R. Sidebotham, and M. West.
Scale and performance in a distributed �le system.
ACM Transactions on Computer Systems, 6(1):51{81,
Feb. 1988.

[16] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton.
Software rejuvenation: Analysis, modules and
applications. In Proceedings of the 25th Annual
International Symposium on Fault-Tolerant
Computing, pages 381{390, Pasadena, CA, June 1995.

[17] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Communications of the ACM,
21(7):558{565, July 1978.

[18] B. Liskov, M. Castro, L. Shrira, and A. Adya.
Providing persistent objects in distributed systems. In
Proceedings of the 13th European Conference on
Object-Oriented Programming (ECOOP '99), Lisbon,
Portugal, June 1999.

[19] B. Liskov, S. Ghemawat, R. Gruber, P. Johnson,
L. Shrira, and M. Williams. Replication in the Harp
File System. In Proceeding of the 13th ACM
Symposium on Operating System Principles, pages
226{238. ACM Press, 1991.

[20] B. Liskov and J. Guttag. Program Development in
Java: Abstraction, Speci�cation, and Object-Oriented
Design. Addison-Wesley, 2000.

[21] S. Ma�eis. Adding group communication and fault

tolerance to CORBA. In Proceedings of the 2nd
USENIX Conference on Object-Oriented Technologies,
pages 135{146, June 1995.

[22] K. Marzullo and F. Schmuck. Supplying high
availability with a standard network �le system. In
Proceedings of the 8th International Conference on
Distributed Computing Systems, pages 447{453. IEEE,
June 1988.

[23] R. Minnich. The Linux BIOS Home Page.
http://www.acl.lanl.gov/linuxbios, 2000.

[24] L. Moser, P. Melliar-Smith, and P. Narasimhan.
Consistent object replication in the eternal system.
Theory and Practice of Object Systems, 4(2):81{92,
Jan. 1998.

[25] P. Narasimhan, K. Kihlstrom, L. Moser, and
P. Melliar-Smith. Providing Support for Survivable
CORBA Applications with the Immune System. In
Proceedings of the 19th IEEE International
Conference on Distributed Computing Systems, pages
507{516, May 1999.

[26] Network working group request for comments: 1014.
XDR: External data representation standard, June
1987.

[27] Network working group request for comments: 1094.
NFS: Network �le system protocol speci�cation,
March 1989.

[28] Object Management Group. The Common Object
Request Broker: Architecture and Speci�cation. OMG
techical committee document formal/98-12-01, June
1999.

[29] Object Management Group. Fault Tolerant CORBA.
OMG techical committee document orbos/2000-04-04,
Mar. 2000.

[30] J. Ousterhout. Why Aren't Operating Systems
Getting Faster as Fast as Hardware? In Proceedings of
USENIX Summer Conference, pages 247{256,
Anaheim, CA, June 1990.

[31] M. Pease, R. Shostak, and L. Lamport. Reaching
Agreement in the Presence of Faults. Journal of the
ACM, 27(2):228{234, Apr. 1980.

[32] R. Rodrigues. Combining abstraction with Byzantine
fault-tolerance. Master's thesis, Massachusetts
Institute of Technology, 2001.

[33] A. Romanovsky. Faulty version recovery in
object-oriented N-version programming. IEE
Proceedings - Software, 147(3):81{90, June 2000.

[34] F. Salles, M. Rodriguez, J. Fabre, and J. Arlat.
MetaKernels and Fault Containment Wrappers. In
Proceedings the 29th Annual International Symposium
on Fault-Tolerant Computing, pages 22{29, June 1999.

[35] F. Schneider. Implementing fault-tolerant services
using the state machine approach: A tutorial. ACM
Computing Surveys, 22(4):299{319, Dec. 1990.

[36] K. Tso and A. Avizienis. Community error recovery in
N-version software: A design study with
experimentation. In Proceedings of the 17th Annual
International Symposium on Fault-Tolerant
Computing, pages 127{133, Pittsburgh, PA, July 1987.

