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Abstract

A major obstacle to �nding program errors in a real sys-
tem is knowing what correctness rules the system must
obey. These rules are often undocumented or speci�ed
in an ad hoc manner. This paper demonstrates tech-
niques that automatically extract such checking infor-
mation from the source code itself, rather than the pro-
grammer, thereby avoiding the need for a priori knowl-
edge of system rules.

The cornerstone of our approach is inferring pro-
grammer \beliefs" that we then cross-check for contra-
dictions. Beliefs are facts implied by code: a dereference
of a pointer, p, implies a belief that p is non-null, a call
to \unlock(l)" implies that l was locked, etc. For be-
liefs we know the programmer must hold, such as the
pointer dereference above, we immediately ag contra-
dictions as errors. For beliefs that the programmer may
hold, we can assume these beliefs hold and use a sta-
tistical analysis to rank the resulting errors from most
to least likely. For example, a call to \spin lock" fol-
lowed once by a call to \spin unlock" implies that the
programmer may have paired these calls by coincidence.
If the pairing happens 999 out of 1000 times, though,
then it is probably a valid belief and the sole deviation
a probable error. The key feature of this approach is
that it requires no a priori knowledge of truth: if two
beliefs contradict, we know that one is an error without
knowing what the correct belief is.

Conceptually, our checkers extract beliefs by tailor-
ing rule \templates" to a system { for example, �nding
all functions that �t the rule template \<a> must be
paired with <b>." We have developed six checkers that
follow this conceptual framework. They �nd hundreds
of bugs in real systems such as Linux and OpenBSD.
From our experience, they give a dramatic reduction in
the manual e�ort needed to check a large system. Com-
pared to our previous work [9], these template checkers
�nd ten to one hundred times more rule instances and
derive properties we found impractical to specify man-
ually.

1 Introduction

We want to �nd as many serious bugs as possible. In
our experience, the biggest obstacle to �nding bugs is
not the need for sophisticated techniques nor the lack
of either bugs or correctness constraints. Simple tech-
niques �nd many bugs and systems are �lled with both
rules and errors. Instead, the biggest obstacle to �nd-
ing many bugs is simply knowing what rules to check.
Manually discovering any signi�cant number of rules a
system must obey is a dispiriting adventure, especially
when it must be repeated for each new release of the
system. In a large open source project such as Linux,
most rules evolve from the uncoordinated e�ort of hun-
dreds or thousands of developers. The end result is an
ad hoc collection of conventions encoded in millions of
lines of code with almost no documentation.

Since manually �nding rules is diÆcult, we instead
focus on techniques to automatically extract rules from
source code without a priori knowledge of the system.
We want to �nd what is incorrect without knowing what
is correct. This problem has two well-known solutions:
contradictions and common behavior. How can we de-
tect a lie? We can cross-check statements from many
witnesses. If two contradict, we know at least one is
wrong without knowing the truth. Similarly, how can we
divine correct behavior? We can look at examples. If
one person acts in a given way, it may be correct behav-
ior or it may be a coincidence. If thousands of people all
do the same action, we know the majority is probably
right, and any contradictory action is probably wrong
without knowing the correct behavior.

Our approach collects sets of programmer beliefs,
which are then checked for contradictions. Beliefs are
facts about the system implied by the code. We ex-
amine two types of beliefs: MUST beliefs and MAY be-
liefs. MUST beliefs are directly implied by the code, and
there is no doubt that the programmer has that belief.
A pointer dereference implies that a programmer must
believe the pointer is non-null (assuming they want safe
code). MAY beliefs are cases where we observe code
features that suggest a belief but may instead be a co-
incidence. A call to \a" followed by a call to \b" implies
the programmer may believe they must be paired, but
it could be a coincidence.

Once we have a set of beliefs, we do two things.
For a set of MUST beliefs, we look for contradictions.
Any contradiction implies the existence of an error in
the code. For a set including MAY beliefs, we must
separate valid beliefs from coincidences. We start by
assuming all MAY beliefs are MUST beliefs and look



for violations (errors) of these beliefs. We then use a
statistical analysis to rank each error by the probability
of its beliefs. If a particular belief is observed in 999 out
of 1000 cases, then it is probably a valid belief. If the
belief happens only once, it is probably a coincidence.

We apply the above approach by combining it with
our prior work [9]. That work used system-speci�c static
analyses to �nd errors with a �xed set of manually found
and speci�ed rules (e.g.,\spin lock(l) must be paired
with spin unlock(l)"). It leveraged the fact that ab-
stract rules commonly map to fairly simple source code
sequences. For example, one can check the rule above by
inspecting each path after a call to \spin lock(l)" to
ensure that the path contains a call to \spin unlock(l)."
While e�ective, this previous work was limited by the
need to �nd rules manually. This paper describes how
to derive rule instances automatically: our system infers
the pairing rule above directly from the source code.

Experience indicates that this approach is far bet-
ter than the alternative of manual, text-based search to
�nd relevant rule instances. The analyses in this paper
automatically derive all the rule instances previously
hand-speci�ed in [9], as well as an additional factor of
ten to one hundred more. Further, we now check prop-
erties that we formerly gave up on (see Section 7). We
demonstrate that the approach works well on complex,
real code by using it to �nd hundreds of errors in the
Linux and OpenBSD operating systems. Many of our
bugs have resulted in kernel patches.

Section 2 discusses related work. Sections 3{5 give
an overview of the approach, and Sections 6{9 apply it
to �nd errors. Section 10 concludes.

2 Related Work

There are many methods for �nding errors. The most
widely used, testing and manual inspection, su�er from
the exponential number of code paths in real systems
and the erratic nature of human judgment. Below, we
compare our approach to other methods of �nding errors
in software: type systems, speci�cation-based checking,
and high-level compilation. We close by comparing our
work with two systems that dynamically infer invari-
ants.

Type systems. Language type systems probably
�nd more bugs on a daily basis than any other approach.
However, many program restrictions|especially tempo-
ral or context-dependent restrictions|are too rich for
an underlying type system or are simply not expressed
in it. While there has been some work on richer frame-
works such as TypeState [23], Vault [6], and aspect-
oriented programming [17], these still miss many sys-
tems relations and require programmer participation.
Further, from a tool perspective, all language approaches
require invasive, strenuous rewrites to get results. In
contrast, our approach transparently infers richer, system-
speci�c invariants without requiring the use of a speci�c
language or ideology for code construction.

Traditional type systems require programmers to
lace a �xed type system throughout their code. We take
the opposite approach of inferring an ad hoc type sys-
tem implicit in programs and then putting this into the
compiler. As a side-e�ect, we show that code features
believed to require speci�cation can be pulled from the
source directly (see Section 7).

Speci�cations. Another approach is to specify
code and then check this speci�cation for errors. An
extreme example of this approach is formal veri�ca-
tion. It gains richness by allowing the programmer to
express invariants in a general speci�cation, which is
then checked using a model checker [19, 22], theorem
provers, or checkers [13, 20]. While formal veri�cation
can �nd deep errors, it is so diÆcult and costly that it
is rarely used for software. Further, speci�cations do
not necessarily mirror the code they abstract and su�er
from missing features and over-simpli�cations in prac-
tice. While recent work has begun attacking these prob-
lems [5, 15, 18], verifying software is still extremely rare.
The SLAM project [2] is a promising variation on this
approach. It extracts and then model checks a Boolean
variable program skeleton from C code. However, it re-
quires considerably more e�ort than our approach, and
appears to check a more limited set of properties.

Recent work has developed less heavyweight check-
ers, notably the extended static type checking (ESC)
project [7], which checks interface-level speci�cations
and LCLint [11], which statically checks programmer
source annotations. However, these approaches still re-
quire more e�ort than those in this paper. The speci-
�cations required by these approaches scale with code
size. In contrast, our analyses cost a �xed amount to
construct but then repay this cost by automatically ex-
tracting checking information from large input codes. In
a sense, our work is complementary to these other ap-
proaches, since the information extracted by our anal-
yses can be used to check that speci�cations correctly
describe code.

The Houdini assistant to ESC [12] is one e�ort to de-
crease the manual labor of annotation-based approaches.
Houdini uses annotation templates to automatically de-
rive ESC annotations, then uses those annotations to
statically �nd runtime errors in Java programs. One
di�erence between our approach and theirs is that we
allow for much noisier samples when deriving our rule
templates, then we use statistical analysis to rank the
derived rules.

High-level Compilation. Many projects have em-
bedded hard-wired application-level information in com-
pilers to �nd errors [1, 3, 4, 8, 21, 24]. These projects
�nd a �xed set of errors, whereas we derive new checks
from the source itself, allowing detection of a broader
range of errors. The checking information we extract
could serve as inputs to suitably modi�ed versions of
these other checkers.

Dynamic invariant inference. The two most sig-
ni�cant projects in this area are Daikon and Eraser.
Daikon is the most similar project to ours in terms of
deriving program rules [10]. Daikon dynamically moni-
tors program execution to reconstruct simple algebraic
invariants. It starts with a set of mostly linear build-
ing block hypotheses (that a variable is a constant, that
it is always less than or greater than another variable)
and validates each hypothesis against each execution
trace. If a trace violates a hypothesis, the hypothe-
sis is discarded. Compared to static analysis, dynamic
monitoring has the advantage that noise and undecid-
ability is less of a concern: by de�nition, an executed
path is possible, and at runtime, all values can be deter-
mined. However, the accuracy of dynamic monitoring



has a cost. Daikon is primarily intended to help un-
derstand programs. It has found very few errors and
would have several signi�cant diÆculties in doing so: it
can only see executed paths, requires test cases that ad-
equately exercise the code it monitors, and can only ob-
serve how code works in the tested environment. Static
analysis does not have any of these problems.

In terms of desire to �nd bugs, the Eraser system
is most similar to our work [21]. Eraser dynamically
detects data races by monitoring which locks protect
which variables. Inconsistent locking is agged as an
error. Eraser has been e�ective at �nding real bugs [21].
However, because it is dynamic it has similar limitations
to Daikon: it only sees a limited number of paths, re-
quires the ability to monitor code, and can only ag an
error when a path is executed.

Of course, dynamic information can be quite useful.
In future work we intend to explore how static analy-
sis can be augmented with dynamic monitoring. One
possibility is using pro�le data to rank bugs.

3 Methodology

This section introduces our approach and terminology
for �nding bugs. The goal of our approach is to extract
beliefs from code and to check for violated beliefs.

We restrict our attention to beliefs that �t generic
rule templates. An example template is \<a> must be
paired with <b>." In this example, the bracketed let-
ters <a> and <b> represent positions in our template
that the extraction process should �ll with concrete el-
ements from the code. We call these positions slots and
code elements that �ll slots slot instances. Possible slot
instances for slots <a> and <b> could be the function
calls lock and unlock respectively.

The remainder of this section explains how we ap-
ply a template to a new, unknown system and end up
with hundreds of automatically-detected bugs. We be-
gin with a detailed example of a null-pointer-use checker.
This example introduces a general approach that we
call internal consistency. We then present a detailed
description of a locking-discipline checker, which intro-
duces an approach we call statistical analysis. We con-
clude by describing the system we use to implement our
checkers and the systems that we check.

3.1 Example: null pointer consistency

This subsection illustrates how internal consistency can
�nd errors by applying it to one of the simplest possible
problems: detecting null-pointer uses statically. Con-
sider the following code fragment, which compares the
pointer card against null and then dereferences it:

/* 2.4.1:drivers/isdn/avmb1/capidrv.c: */
1: if (card == NULL) {
2: printk(KERN_ERR "capidrv-%d: ... %d!\n",
3: card->contrnr, id);
4: }

At line 1, the check card == NULL implies the belief
that card is null on the true path of the conditional.
However, at line 3 the dereference card!contrnr im-
plies the belief that card is not null: a contradiction.
A consistency checker can �nd such errors by associat-
ing every pointer, p, with a belief set and agging cases
where beliefs contradict. For our example, p's belief
set could contain nothing (nothing is known about p),
\null" (p is de�nitely null), \not null" (p is de�nitely

not null), or both \null" and \not null" (p could be ei-
ther). Any code element, or action, implying a belief
that contradicts p's current belief set is an error.

Note that, while not relevant for the error above, the
comparison action at line 1 also implies that p's belief
set should contain both \null" and \not null" before line
1. Otherwise, this check is pointless. This implied belief
set is useful in a di�erent piece of code:

/* 2.4.7:drivers/char/mxser.c */
1:int mxser_write(struct tty_struct *tty, ...) {
2: struct mxser_struct *info = tty->driver_data;
3: unsigned long flags;
4:
5: if (!tty || !info->xmit_buf)
6: return (0);
7: ...

At line 2, tty!driver data dereferences tty, but at
line 5 the check !tty implies tty could be null. Either
the check is impossible and should be deleted, or the
code has a potential error and should be �xed. The
following beliefs are inferred on each line:

Line 1: entry to mxser write. Assuming we do not
have inter-procedural information, the checker sets
tty's belief set to \unknown," otherwise we set it
to its value at the caller.

Line 2: the checker sets tty's belief set to \not null."

Lines 3 and 4 have no impact on the belief set. We say
a belief set is propagated when it moves from one
action to another. In this case, the belief set after
line 2 is propagated forward through lines 3 and 4
to line 5.

Line 5: implies a belief set for tty containing both
\null" and \not null." However, the only path to
this condition has a belief set of \not null," which
contradicts the implied belief set.

We formalize the framework for internal consistency check-
ers below.

3.2 General internal consistency

Consistency checkers are de�ned by �ve things:

1. The rule template T .

2. The valid slot instances for T .

3. The code actions that imply beliefs.

4. The rules for how beliefs combine, including the
rules for contradictions.

5. The rules for belief propagation.

The rule template T determines what property the checker
tests. The checker's job is to �nd and check valid slot
instances for the template, T . For example, the null-
pointer checker's template is \do not dereference null
pointer <p>," and all pointers are potentially valid slot
instances for <p>. Each slot instance has an associated
belief set. At each action, we consider how that action
e�ects the belief sets for each slot instance. For the
checker above, if an action is a dereference of a pointer
p, the action can either (1) signal an error if p's belief
set contains the belief \null," or (2) add the belief \not
null" to p's belief set. If an action implies a belief, we



must also consider how that belief propagates to other
actions. A comparison, p == NULL, propagates the be-
lief that p is \null" to all subsequent actions on its true
branch, the belief that p is \not null" to all subsequent
actions on its false branch, and the belief that p could
be either \null" or \not null" when these paths join. In
general, beliefs can propagate forward, backward, from
caller to callee, between functions that implement the
same abstract interface either within the same program
or across programs, or to any other piece of related code.
We give a more complete discussion of related code in
Section 4.2.

More formally, for any slot instance v, we denote
its belief set as Bv. The null checker associates each
pointer p with a belief set Bp that can take on the values
Bp = fnullg (p is de�nitely null), Bp = fnotnullg (p is
de�nitely not null), or Bp = fnull; notnullg (p could be
either null or not null). By convention an empty belief
set, Bp = ;, means nothing is known about p.

Most actions have no impact on the current belief
sets other than propagating them forward unaltered to
the next statement. The null checker above had two
actions that imply beliefs: dereferences and compar-
isons. These actions a�ect the belief set of one valid
slot instance, i.e. the pointer, p, that is dereferenced
or compared to null. A dereference of pointer p im-
plies the belief notnull (Bp = fnotnullg) and gives
an error if p's belief set contains null (null 2 Bp).
Comparison implies two things. First, p's belief set
prior to the comparison contains both null and notnull
(Bp = fnull; notnullg). An error is given if the be-
liefs are known more precisely (error if Bp = fnullg or
Bp = fnotnullg)). Second, after the conditional, p is
null on the true path (Bp = fnullg), and not null on
the false (Bp = fnotnullg).

One complication when propagating beliefs is what
happens when di�erent paths join. The null checker
takes the union of all beliefs on the joining paths. For
the �rst example, card's belief set is Bp = fnullg on
the true path after the comparison card == NULL, Bp =
fnotnullg on the false path, but becomes Bp = fnull,
notnullg when the paths join after line 4.

3.3 Example: statistical lock inference

This subsection illustrates how statistical analysis can
�nd errors in sets of MAY beliefs. We use statistical
analysis to rank MAY belief errors from most to least
probable.

Consider the problem of detecting when a shared
variable v is accessed without its associated lock l held.
If we know which locks protect which variables, we can
readily check this rule using static analysis. Unfortu-
nately, most systems do not specify \lock <l> protects
variable <v>." However, we can derive this speci�ca-
tion from the code by seeing what variables are \usu-
ally" protected by locks. If v is almost always protected
by l, it may be worth agging cases where it is not.

Consider the contrived code example in Figure 1
with two shared variables, a and b, that may or may
not be protected by a lock l. Here, a is used four
times, three times with l held, and once without l
held. In contrast, b is indi�erently protected with l:
not protected twice, and protected once in a plausibly-
coincidental situation. Intuitively, a is much more plau-

1: lock l; // Lock
2: int a, b; // Variables potentially

// protected by l
3: void foo() {
4: lock(l); // Enter critical section
5: a = a + b; // MAY: a,b protected by l
6: unlock(l); // Exit critical section
7: b = b + 1; // MUST: b not protected by l
8: }
9: void bar() {

10: lock(l);
11: a = a + 1; // MAY: a protected by l
12: unlock(l);
13: }
14: void baz() {
15: a = a + 1; // MAY: a protected by l
16: unlock(l);
17: b = b - 1; // MUST: b not protected by l
18: a = a / 5; // MUST: a not protected by l
19: }

Figure 1: A contrived, useful-only-for-illustration exam-
ple of locks and variables

sibly protected by l than b. This belief is further strength-
ened by the fact that a is the only variable accessed in
the critical section at line 11 { either the acquisition of
l is spurious (locks must protect something) and should
be �xed, or the programmer believes l protects a.

Our checking problem reduces to inferring if code
believes l protects v. If a use of variable v protected by
lock l implied the MUST belief that l protects v, then
we could check the rule above using internal consistency.
However, the protected access could simply be a coinci-
dence, since accessing unprotected variables in critical
sections is harmless. Thus, we can only infer that code
may believe l protects v. We call this type of belief a
MAY belief.

How can we check MAY beliefs? In all cases we con-
sider in this paper, the MAY belief reduces to whether
or not candidate slot instances should be checked with a
rule T . For the example above, should a given variable
a and lock l be checked with the template \variable a
must be protected by lock l?" An e�ective way to de-
termine if such a MAY belief is plausible is simply to
act on it: check the belief using internal consistency and
record how often the belief satis�ed its rule versus gave
an error. We can use these counts to rank errors from
most to least credible (essentially ranking the belief by
how often it was true versus its negation). The more
checks a belief passes, the more credible the (few) vio-
lations of it are, and the higher these errors are ranked.
The highest ranked errors will be those with the most
examples and fewest counter-examples, the middle will
be beliefs violated much more often, and the bottom er-
rors will be from almost-always violated beliefs. When
inspecting results, we can start at the top of this list
and work our way down until the noise from coinciden-
tal beliefs is too high, at which point we can stop.

For the code above, we would treat both MAY be-
liefs, \l protects a" and \l protects b," as MUST be-
liefs. Before checking whether a lock protects a variable,
though, we must �rst determine whether the lock is held
at all. Beliefs about locks propagate both forward and
backward from lock and unlock actions: lock(l) im-
plies a belief that l was not locked before, but locked
afterwards, and unlock(l) implies a belief that l was



locked before, but unlocked afterwards. (As a side-
e�ect, this checker could catch double-lock and double-
unlock errors.)

Using the lock belief sets, we can then record for
each variable (1) how it was checked with the rule (once
for each access: four times for a, three for b) and (2)
how many times the variable failed the check. I.e., the
number of times it was accessed where Bl = funlockedg
(one for a, two for b). Since a is usually protected by l,
the unprotected access at line 18 is probably a valid er-
ror. Since b has more errors than correct uses, we would
usually discard it. (Programmers are usually right. If
they are not, then we have much bigger concerns than
a few concurrency bugs.) More generally, we use the
\hypothesis test statistic" to rank errors based on the
ratio of successful checks to errors. This statistic favors
samples with more evidence, and a higher ratio of ex-
amples to counter-examples. We discuss this statistic
further in Section 5.

3.4 General statistical analysis

For this paper, the only MAY beliefs that concern us
are whether a particular set of slot instances can be
checked with a rule template T . Thus, conceptually,
a statistical checker is an internal consistency checker
with three modi�cations:

1. It applies the check to all potential slot instance
combinations. I.e., it assumes that all combina-
tions are MUST beliefs.

2. It indicates how often a speci�c slot instance com-
bination was checked and how often it failed the
check (errors).

3. It is augmented with a function, rank, that uses
the count information above to rank the errors
from all slot combinations from most to least plau-
sible.

For the lock checker above, this would mean that the
checker would consider all variable-lock pairs (v; l) as
valid instances. For each pair (v; l), it emits an error
message at each location where v was used without lock
l held, and a \check" message each time v was accessed.
For the code above, there are two possible slot combi-
nations, (a, l) and (b, l). The instance (a, l) has
four check messages (lines 5, 11, 15, 18) and one error
(line 18). The instance (b, l) has three check messages
(lines 5, 7, 17) and two errors (lines 7 and 17).

There are two practical di�erences between inter-
nal consistency and statistical checkers. First, for good
results, statistical analysis needs a large enough set of
cases. In contrast, an internal consistency checker can
give de�nitive errors with only two contradictory cases.
Second, to make the universe of slot instances more
manageable, a statistical checker may use an optional
pre-processing pass that �lters the universe of possible
slot instances down to those that are at least moderately
plausible.

This technique applies to many types of system rules.
While internal consistency ags all cases where there
are conicting beliefs as errors, statistical analysis can
be used even when the set of checks and errors is noisy.

sm internal_null_checker {
state decl any_pointer v;

/* Initial start state: match any pointer
compared to NULL in code, put it in a 'null'
state on true path, ignore it on false path. */

start:
{ (v == NULL) } ==> true=v.null, false=v.stop

| { (v != NULL) } ==> true=v.stop, false=v.null
;
/* Give an error if a pointer in the null state

is dereferenced in code. */
v.null:
{ *v } ==> { err("Dereferencing NULL ptr!"); }
;

}

Figure 2: A simple metal extension that ags when
pointers compared to null are dereferenced.

3.5 How we implement checkers

We write our analyses in metal (see Figure 2), a high-
level state machine (SM) language for writing system-
speci�c compiler extensions [9]. These extensions are
dynamically linked into xgcc, an extended version of
the GNU gcc compiler. After xgcc translates each in-
put function into its internal representation, the exten-
sions are applied down each execution path in that func-
tion. The system memoizes extension results, making
the analyses usually roughly linear in code length.

Metal can be viewed as syntactically similar to a
\yacc" speci�cation. Typically, SMs use patterns to
search for interesting source code features, which cause
transitions between states when matched. Patterns are
written in an extended version of the base language
(GNU C), and can match almost arbitrary language
constructs such as declarations, expressions, and state-
ments. Expressing patterns in the base language makes
them both exible and easy to use, since they closely
mirror the source constructs they describe.

The system is described in more detail elsewhere [9].
For our purposes, the main features of extensions are
that they are small and simple |most range between 50
and 200 lines of code, and are easily written by system
implementers rather than compiler writers. Many of the
errors we �nd leverage the fact that our analyses can be
aggressively system-speci�c.

A key feature of how we inspect errors is that we
�rst rank them (roughly) by ease-of-diagnosis as well as
likelihood of false positives. Our ranking criteria places
local errors over global ones, errors that span few source
lines or conditionals over ones with many, serious errors
over minor ones, etc. We then inspect errors starting at
the top of this list and work our way down. When the
false positive rate is \too high," we stop. Thus, while
our checkers report many errors, we rarely inspect all of
them.

Static analysis is scalable, precise, and immediate.
Once the �xed cost of writing an analysis pass is paid,
the analysis is automatic (scalability), it can say ex-
actly what �le and line led to an error and why (pre-
cision), and it does not require executing code (imme-
diacy). Further, static analysis �nds bugs in code that
cannot be run. This feature is important for OS code,
the bulk of which resides in device drivers. A typical
site will have have less than ten (rather than hundreds)



of the required devices.

3.6 What systems we check

We have applied our extensions to OpenBSD and Linux.
The bulk of our work focuses on two Linux snapshots:
\2.4.1" and \2.4.7." Version 2.4.1 was released roughly
when the �rst draft of this paper was written; 2.4.7
roughly when the �nal draft was completed. Which
version we check is determined by which was current
when the checker being described was written. Thus,
both represent a hard test: live errors, unknown until
we found them. We occasionally select example errors
from other more intermediate snapshots, but we mainly
report results from released versions for reproducibil-
ity. Finally, we also apply several of our checkers to
OpenBSD 2.8 to check generality.

The main caveat with all of our results is that we
are not Linux or OpenBSD implementers, and could get
fooled by spurious couplings or non-obvious ways that
apparent errors were correct. We have countered this
by releasing almost all of our bugs to the main kernel
implementers. Many have resulted in immediate kernel
patches.

The next two sections continue the discussion of
methodology, describing MAY andMUST beliefs in more
detail. The rest of the paper evaluates the methodology
with case studies.

4 Internal Consistency

Internal consistency �nds errors by propagating MUST
beliefs inferred at one code location to related locations.
Any belief conict is an error. We introduced internal
consistency by describing a null pointer checker in Sec-
tion 3. In this section we describe other applications of
the same general technique and provide a more detailed
description of the technique itself. Section 6 and Sec-
tion 7 then present two case studies of using it to �nd
errors.

Table 1 gives a set of example questions that can
be answered using MUST beliefs. For example, as dis-
cussed in Section 7, we can use code beliefs to determine
if a pointer, p, is a kernel pointer or a dangerous user
pointer. If p is dereferenced, the kernel must believe
it is a safe kernel pointer. If it passes p to a special
\paranoid" routine, it must believe p is an unsafe user
pointer. It is an error if p has both beliefs.

Consistency within a single function is the simplest
form of these checkers: if a function f treats pointer
p as an unsafe pointer once, it must always treat p
as unsafe. Consistency checkers can go beyond self-
consistency, though. Code can be grouped into equiva-
lence classes of related code that must share the same
belief set. We can then propagate beliefs held in one
member to all members in the equivalence class. This
gives us a powerful lever: a single location that holds
a valid MUST belief lets us �nd errors in any code we
can propagate that belief to. Therefore, we have two
primary objectives: (1) �nding MUST beliefs, and (2)
relating code. The more beliefs found, the more appli-
cable the checker. The more code we can relate, the fur-
ther we can propagate beliefs, and thus the more likely
it is we will �nd at least one location that holds a valid
MUST belief. We discuss each of these two objectives
briey below.

4.1 Inferring MUST beliefs

We infer MUST beliefs in two ways: (1) direct obser-
vation and (2) implied pre- and post-conditions. Direct
observation uses standard compiler analyses to compute
what code must believe by tracking actions that reveal
code state. The null-pointer checker described in Sec-
tion 3, for example, can use two direct observations:
setting a pointer p to null, and checking if p is null. The
�rst is an explicit state change, while the second is an
observation of state. After changing state, the program-
mer must believe the changes took e�ect. Similarly, af-
ter observing state, the programmer must believe the
observation is true. Note that beliefs inferred from di-
rect observation are validated in that we can compute
their truth ourselves.

The second method of inferring beliefs is based on
the fact that many actions in code have pre- and post-
conditions. For example, division by z implies a be-
lief that z is non-zero, and deallocation of a pointer, p,
implies a belief that it was dynamically allocated (pre-
condition) and will not be used after the deallocation
(post-condition). If we further assume that code intends
to do useful work, we can infer that code believes that
actions are not redundant. In Section 3 we observed
that a check of p against null implies a belief that the
check was not spurious. Similarly, a mutation such as
setting p to q implies a belief that p could have been dif-
ferent from q. As Section 6 and Section 8 demonstrate,
agging such redundancies points out where program-
mers are confused and hence have made errors.

4.2 Relating code

Code can be related both at an implementation level,
when there is an execution path from action a to action
b, or at an abstraction level, when a and b are related
by a common interface abstraction or other semantic
boundary. We consider each below.

Code related by implementation. An execution
path from a to b allows us to cross-check a's beliefs
with b's, typically using standard compiler analysis. In
addition to obvious beliefs about shared data, we can
also cross-check their assumed execution context and
fault models. For example, if a calls b, b usually inherits
a's fault model: if a checks foo for failure, b must as
well (b must be at least as careful as a). Conversely, a
inherits the faults of b: if b can fail, a can as well.

Code related abstractly. If a and b are imple-
mentations of the same abstract routine, interface, or
abstract data type, we can cross-check any beliefs that
this relationship implies.

If a and b implement the same interface, they must
assume the same execution context and fault model. In
addition, they must also have the same argument re-
strictions, produce the same error behavior, etc. Exam-
ple contradictions in these categories include: a exits
with interrupts disabled, b with them enabled; a checks
its �rst argument p against null, b dereferences p di-
rectly; a returns positive integers to signal errors, b re-
turns negative integers. We can even perform checks
across programs, such as checking that di�erent Unix
implementations of POSIX system calls have the same
argument checks and return the same error codes. Fi-
nally, if a and b are equivalent, this implies we can also
(symmetrically) cross-check the di�erent pieces of code



Template Action Belief
\Is <P> a null pointer?" *p Is not null.
Section 6 p == null? null on true, not-null on false.
\Is <P> a dangerous user pointer?" p passed to copyout or copyin Is a dangerous user pointer.
Section 7 *p Is a safe system pointer.
\Must IS ERR be used to check Checked with IS ERR Must always use IS ERR.
routine <F>'s returned result?"
Section 8.3

Not checked with IS ERR Must never use IS ERR.

Table 1: Questions that can be inferred using internal consistency. Ranking the results is not necessary because a
single contradicted belief must be an error. A nice feature: contradictions let us check code without knowing its
context or state.

that use a against those that use b.
How can we tell when we can relate code at an ab-

stract level? One way, of course, is by divine interven-
tion: if we know a and b are the same, we can cross-check
them. Lacking this knowledge, we must �nd these re-
lationships automatically. One simple technique is to
relate the same routine to itself through time across dif-
ferent versions. Once the implementation becomes sta-
ble, we can check that any modi�cations do not violate
invariants implied by the old code. Another way to re-
late code is to exploit common idioms that imply that
two implementations provide the same abstract inter-
face. A common idiom is that routines whose addresses
are assigned to the same function pointer or passed as
arguments to the same function tend to implement the
same abstract interface. Our most important use of this
trick is to cross-check the many implementations of the
same interface within a single OS, such as di�erent �le
systems that export the same virtual �le interface to the
host OS and di�erent device drivers that all implement
an interrupt handler (see Section 7).

5 Statistical analysis

Statistical checkers �nd errors in MAY beliefs. They
use statistical analysis to �lter out coincidences from
MAY beliefs by observing typical behavior over many
examples.

We sort the errors from statistical analysis by their
ranking according to the z statistic for proportions [14]:

z(n; e) = (e=n� p0)=
p
(p0 � (1� p0)=n

where n is the population size (the number of checks), c
the number of counter examples (errors), e the number
of examples (successful checks: n� c), p0 the probabil-
ity of the examples and (1 � p0) the probability of the
counter-examples. This statistic measures the number
of standard errors away the observed ratio is from an
expected ratio. We typically assume a random distri-
bution with probability p0 = 0:9. The ranking, z, in-
creases as n grows and the number of counter-examples
decreases. Intuitively, the probability of an observed re-
sult also increases with the number of samples. For the
purposes of bug �nding, perfect �ts are relatively un-
interesting. Error cases reside where there are at least
some number of counter-examples. Given enough sam-
ples, derivation can infer a wide range of rule instances.
Table 2 gives a set of example questions that can be
answered using statistical checkers.

There are a couple of things to note about this rank-
ing approach. First, it can be augmented with addi-

tional features. One useful addition is code trustworthi-
ness: code with few errors is more reliable for examples
of correct practice than code with many.

Second, it has an interesting inversion property. If
z(N;E) ranks instances that satisfy a template T , then
it is commonly useful to also rank z(N;N � E), which
computes :T . Often, if template T is useful, its nega-
tion :T is useful as well. We call this the inverse prin-
ciple.

Third, statistical analysis, like internal consistency,
can exploit the non-spurious principle. Many proper-
ties must be true for at least one element: a lock must
protect some variable or routine; a security check must
protect some sensitive action. For such cases, an empty
template slot signals a derivation error. For example, if
the lock checker in Section 3.3 �nds that a lock l has no
variable v such that the ratio of checks to errors for (l,
v) gives an acceptable rank (z(checks; checks�errors)),
then we know there is a problem: either our analysis
does not understand lock bindings, or the program has
a serious set of errors. In general, this idea can be triv-
ially applied to the statistical analysis of any property
that must have at least one member. In some cases, we
can also use it to immediately promote a MAY belief
to a MUST belief without any statistical analysis. For
example, a critical section that only accesses a single
shared variable implies that the code must believe that
the variable is protected by the critical section's lock.

5.1 Handling noise

One concern when deciding if MAY beliefs are true
is noise from both coincidences and imperfect analy-
sis. There are three key features we use to counter
such noise: large samples, ranking error messages, and
human-level operations.

First, we can easily gather large representative sets
of behavioral samples by basing our approach on static
analysis, which allows us to examine all paths. While
these paths are inherently noisy, there are so many that
we can derive many patterns and only use the most
promising candidates.

Second, we can counter noise in our error messages
by using the z statistic value to rank errors from most
to least credible. We can then inspect these errors and
stop our search once the false positive rate is deemed
too high. This step is in some sense the most crucial.
A naive use of the z statistic would be to use it to rank
beliefs rather than errors. Our initial approach did just
that: we selected a threshold t, calculated z for each
belief, and treated those beliefs above the threshold as



MUST beliefs. We then checked rules using these beliefs
and threw all of the resultant errors in the same pool.
The problem with this approach is its sensitivity to t's
value. If t is too low, we drown in false positives. If it is
too high, we do not �nd anything interesting. However,
ranking error messages rather than beliefs completely
avoids these problems: we can start inspecting at the
top where the most extreme cases are (and thus the
false positive rate is lowest). Noise will increase steadily
as we go down the list. When it is too high, we stop.
Switching to this approach made a notable di�erence in
building e�ective checkers.

Finally, our analyses are also aided by the fact that
code must be understood by humans. Important oper-
ations are usually gifted with a special function call,
set of data types, and even speci�c naming conven-
tions. In fact, we can commonly use these latent speci-
�cations to cull out the most easily understood results
(e.g., when deriving paired functions to give priority to
pairs with the substrings \lock," \unlock", \acquire,"
\release", etc.) We discuss this further below.

5.2 Latent speci�cations

Latent speci�cations are features designed to communi-
cate intent to other programmers and idioms that im-
plicitly denote restrictions and context. Because they
are encoded directly in program text, extensions can
easily access them to determine where and what to check,
as well as what conditions hold at various points in the
code. Leveraging these encodings makes our approach
more robust than if it required that programmers write
speci�cations or annotate their code, since in practice,
it is an event worth remarking when they do. Statistical
analysis checks (and in some cases internal consistency
checks) leverage latent speci�cations to �lter results and
to suppress false positives.

The most primitive latent speci�cations are nam-
ing conventions. Familiar substrings include \lock,"
\unlock," \alloc," \free," \release," \assert," \fatal,"
\panic," \spl" (to manipulate interrupt levels), \sys "
(to signal system calls), \ intr" (to ag interrupt han-
dlers), \brelse" (to release bu�er cache blocks), and
\ioctl" (as an annotation for buggy code). Our statis-
tical analysis passes use these as auxiliary information
when agging potentially interesting functions.

At a slightly higher-level, most code has cross-cutting
idioms that encode meaning. For example, error paths
are commonly signaled with the return of a null pointer
or a negative (or positive) integer. These annotations
allow checkers to detect failure paths at callers, and er-
ror paths within callees.

Code is also interlaced with executable speci�ca-
tions. For example, debugging assertions precisely state
what conditions must hold when a routine runs. An-
other example is routines such as BUG in Linux and
panic in BSD. These calls serve as precise annotations
marking which paths cannot be executed (since the ma-
chine will have rebooted after either call). Our checkers
use them to suppress error messages on such paths.

Finally, speci�cations can be completely transpar-
ent but shared across all code in a given domain. Exam-
ples include the popular rules that null pointers should
not be dereferenced and that circular locking is bad. A
compiler extension can directly encode this information.

6 Internal Null Consistency

The next four sections are case studies evaluating our
approach: this section and the next focus on internal
consistency, while Section 8 and Section 9 focus on sta-
tistical analysis.

This section implements a generalized version of
the internal consistency checker in Section 3. It �nds
pointer errors by agging three types of contradictory
or redundant beliefs:

1. Check-then-use: a pointer p believed to be null is
subsequently dereferenced.

2. Use-then-check: a pointer p is dereferenced but
subsequently checked against null. Note that this
is only an error if no other path leading to the
check has the opposite belief that p is null.

3. Redundant checks: a pointer known to be null
or known to be not null is subsequently checked
against null (or not null). As above, all paths
leading to the check must have the same known
value of p.

Check-then-use and use-then-check violate the rule \do
not dereference a null pointer <p>." They tend to
be hard errors that cause system crashes. Redundant
checks violate the rule \do not test a pointer <p> whose
value is known." While violations do not cause crashes
directly, they can ag places where programmers are
confused.

Conceptually, as described earlier in the paper, the
checker associates a belief set with each pointer p. The
beliefs in the list can be one or more of: (1) null, (2)
not-null, or (3) unknown (the empty list). The checker
rules are straightforward:

1. A dereference of pointer p adds the belief not-null
to p's belief set. It is an error if the belief set
contained null.

2. A pointer checked against null (or non-null) im-
plies two beliefs. First, it propagates backwards
the belief that the pointer's value is unknown (i.e.,
it could be either null or not null). The checker
ags an error if p is known to have a more precise
belief. Second, the check propagates forward the
belief that p is null on the true path and non-null
on the false path.

For simplicity, we implemented each error type using a
di�erent extension. The implementation is straightfor-
ward. For example, the full check-then-use checker is
written in less than 50 lines (Figure 2 gives a stripped
down version). It puts every pointer p compared to null
in a \null" state and ags subsequent dereferences as
errors. The others follow a similar pattern except that
they make sure that the error would occur on all paths
before reporting it.

Unlike most checkers, the most interesting challenge
for these is limiting their scope rather than broadening
it: preventing beliefs from violating abstraction bound-
aries, suppressing impossible paths, and deciding on the
boundary between \good" programming and spurious
checks.



Template (T) Examples (E) Population (N)
\Does lock <L> protect <V>?" Uses of v protected by l Uses of v
\Must <A> be paired with <B>?" paths with a and b paired paths with a
\Can routine <F> fail?" Result of f checked before use Result of f used
\Does security check <Y> protect <X>?" y checked before x x
\Does <A> reverse <B>?" Error paths with a and b paired Error paths with a
\Must <A> be called with interrupts
disabled?"

a called with interrupts disabled a called

Table 2: Templates derivable with statistical analysis; the statistical methods are necessary to counter coincidental
couplings. These were ranked using z(N;E). A commonly useful trick is to use z(N;N �E) to derive :T .

Our checkers must ensure that some beliefs do not
ow across black-box abstraction barriers. For example,
macros can perform context-insensitive checks, which
add the null belief to a pointer's belief set. However,
this belief is not one we can assume for the macro's
user. Thus, we do not want it to propagate outside
the macro since otherwise we will falsely report deref-
erences of the pointer as an error. Almost all false pos-
itives we observed were due to such macros. To re-
duce these, we modi�ed the C pre-processor to anno-
tate macro-produced code so we could truncate belief
propagation. One counter-intuitive result is that un-
like almost all other checkers, both use-then-check and
redundant-check generally work best when purely lo-
cal so as to prevent violations of potential abstraction
boundaries.

A second problem is that the check-then-use checker
is predisposed to ag cases caused by the common id-
iom of checking for an \impossible" condition and then
calling \panic" (or its equivalent) to crash the machine
if the condition was true:

if (!idle)
panic("No idle process for CPU %d", cpu);

idle->processor = cpu;

Here, panic causes a machine reboot, so the dereference
of a null idle is impossible. These calls are essentially
latent speci�cations for impossible paths. To eliminate
such problems, all checkers, including those in this sec-
tion, pre-process the code with a 16-line extension that
eliminates crash paths, thereby removing hundreds of
false positives.

Finally, we must decide on a threshold for redun-
dancy and contradiction errors. Checks separated by a
few lines are likely errors, but separated by 100 could be
considered robust programming practice. We arbitrar-
ily set this threshold to be roughly 10 executable lines
of code.

6.1 Results

Table 3 shows the errors found in Linux. Some of the
more amusing bugs were highlighted in Section 3.1. In
the check-then-use example bug, the desire to print out
a helpful error message causes a kernel segmentation
fault. The second example in Section 3.1 demonstrates
the most common use-then-check error idiom: a deref-
erence of a pointer in an initializer followed by a subse-
quent null check. This example code was cut-and-paste
into twenty locations.

While the redundant-checks checker found far fewer
errors, it did provide evidence for our hypothesis that
redundancy and contradiction is correlated with general

Checker Bug False

check-then-use 79 26
use-then-check 102 4
redundant-checks 24 10

Table 3: Results of running the internal null checker on
Linux 2.4.7.

confusion. Two such redundant cases follow the exam-
ple below where, after an allocation, the wrong pointer
value is checked for success.

/* 2.4.7/drivers/video/tdfxfb.c */
fb_info.regbase_virt = ioremap_nocache(...);
if(!fb_info.regbase_virt)

return -ENXIO;
fb_info.bufbase_virt = ioremap_nocache(...);
/* [META: meant fb_info.bufbase_virt!] */
if(!fb_info.regbase_virt) {

iounmap(fb_info.regbase_virt);

Contradiction also agged 10 suspicious locations
where a contradictory pointer check of tmp buf pointed
out an error:

/* 2.4.7/drivers/char/cyclades.c */
if (!tmp_buf) {

page = get_free_page(GFP_KERNEL);
/* [META: missing read barrier] */
if (tmp_buf)

free_page(page);

Here, a missing cache \read barrier" will potentially al-
low an access to a stale pointer value held in tmp buf;
the other similar locations had spurious synchronization
code.

6.2 Discussion

The main results of this section are: (1) the ideas that
redundant and contradictory observations can be used
to �nd errors and (2) demonstrating that even contra-
diction checking for simple beliefs can �nd many errors
in real code.

The checkers in this section can be generalized to
�nd other redundancies and contradictions. There are
many opportunities for such checks since essentially ev-
ery action in source code implies a set of beliefs. Ex-
ample checks include warning when: (1) a critical sec-
tion does not access some shared state; (2) a structure
�eld is never read or its precision is under-utilized; (3) a
write mutation is never read; (4) functions that cannot
fail are checked; (5) general expressions in conditionals
are impossible or redundant; (6) paths violate assertion
conditions. One contribution of our work is the realiza-
tion that traditional compiler optimization passes, such



as dead code elimination and constant propagation, can
become error checkers with only minor re-tooling.

7 A Security Checker

This section describes a checker that �nds security er-
rors. It uses internal consistency to check slot instances
for the rule template \do not dereference user pointer
<p>," and latent speci�cations to automatically sup-
press false positives from kernel \backdoors." Without
these techniques, we could only check a fraction of ker-
nel code because we could not determine which pointers
were dangerous. With it, we readily found 35 security
holes in Linux and OpenBSD.

7.1 The problem

Operating systems cannot safely dereference user point-
ers. Instead they must access the pointed-to data using
special \paranoid" routines (e.g. copyin and copyout
on BSD derived systems). A single unsafe dereference
can crash the system or, worse, give a malicious party
control of it. With a list of pointers passed from user-
level, static analysis can readily �nd such errors. Un-
fortunately, from experience, the manual classi�cation
of pointers is mystifying. The worst o�enders, device
drivers, make up the bulk of operating systems, inter-
act extensively with user code, but follow no discernible
convention for denoting user pointers. Those routines
that do follow some vague naming convention tend to
have a mixture of safe pointers passed in by the kernel
and unsafe pointers passed raw from the user or fabri-
cated from input integers. Thus, if we cannot classify
these dangerous pointers we will miss all security holes
in the largest source of such errors.

We solve this problem by using internal consistency
to derive which pointers are believed to be user pointers
and then checking that they are never treated as kernel
pointers (dereferenced). The rules for this checker are
as follows:

1. Any pointer that is dereferenced is believed to be
a safe kernel pointer.

2. Any pointer that is sent to a \paranoid" routine
is believed to be a \tainted" user pointer.

3. Any pointer that is believed to be both a user
pointer and a kernel pointer is an error.

The checker re�nes this process by also considering ar-
guments to functions abstractly related through func-
tion pointers. If two functions f and f 0 are assigned to
function pointer fp and f treats its ith parameter p as
a user pointer, then f 0 must also treat its ith parame-
ter p0 as a user pointer. As with our other consistency
checkers, if one use is correct, this technique can check
all other related uses.

7.2 Implementation

Below, we discuss the checker implementation, false pos-
itive suppression, and the manual e�ort needed to re-
target the checker to a new system. We use a security
hole from Linux 2.3.99 (shown in Figure 3) as a running
example to clarify our description of the implementa-
tion. The checker �nds this hole as follows. First, the
call to to the paranoid routine copy from user (line 6)
implies the belief that buff is tainted. Second, buff is

/* net/atm/mpoa_proc.c */
1: ssize_t proc_mpc_write(struct file *file,
2: const char *buff) {
3: page = (char *)__get_free_page(GFP_KERNEL);
4: if (page == NULL) return -ENOMEM;
5: /* [Copy user data from buff into page] */
6: retval = copy_from_user(page, buff, ...);
7: if (retval != 0)
8: ...
9: /* [Should pass page instead of buff!] */
10: retval = parse_qos(buff, incoming);
11: }
12: int parse_qos(const char *buff, int len) {
13: /* [Unchecked use of buff] */
14: strncpy(cmd, buff, 3);

Figure 3: 2.3.99 Security error: the driver carefully
copies the user memory to a safe location (in page) but
then immediately passes the unsafe user pointer buff to
parse qos, which reads from it using strncpy. A strik-
ing feature is that this error is amidst a fair amount of
safety-conscious boilerplate, down to the programmer
using a const quali�er on buff to ensure that buff is
not accidentally mutated.

passed to parse qos (line 10), which then passes it to
strncpy (line 14), which will in turn dereference it, im-
plying buff is a safe kernel pointer. Since these beliefs
conict, the checker emits an error.

The checker works in two passes: a global deriva-
tion pass, which computes summaries and checks function-
pointer assignment, and a local checking pass, which
checks function calls and pointer dereferences using the
summaries computed by the �rst pass.

The global pass �rst computes three summaries: (1)
a transitive closure of all functions that taint their pa-
rameters, (2) a transitive closure of all functions that
dereference their parameters, and (3) every function
pointer assignment (including assignments from static
structure initialization). The results of this pass are
passed to the next step through three text �les.

The two transitive closure operations use essentially
the same technique. For the tainted list, we would like
to know all functions whose parameters are eventually
(through some execution path) passed to a paranoid
routine. This can happen directly, as in line 6 of the
above example or indirectly, as in line 2 of the following
made-up function foo:

1: void foo(struct file *f, char *buff) {
2: ssize_t sz = proc_mpc_write (f, buff);

The dereferencing list is computed in exactly the same
manner. The function parse qos dereferences its pa-
rameter buff directly through the call to strncpy at
line 14. Any functions that call parse qos passing one of
their own parameters as the �rst argument to parse qos
are also marked. The result of these two passes are emit-
ted as two lists (a tainting list and a dereference list) of
the form (fn, i), which indicates function fn taints or
dereferences its ith parameter.

After the summaries are completed, we use the three
summaries to check for conicts in function pointer as-
signment: it is an error for a function pointer to be
assigned one function that dereferences its ith parame-
ter and another that taints its ith parameter. I.e., we
ag an error if function pointer fp is assigned f and



f 0 and (f; i) is on the tainted list and (f 0; i) is on the
dereference list.

We then run the local checking pass, which uses
these three lists similarly to warn when a tainted pointer
is dereferenced or passed to a routine that would deref-
erence it. It goes over each function twice. The �rst
pass examines all call sites, marking any pointer passed
as a parameter to a tainting routine as tainted. In our
example, the pointer buff is marked as tainted because
it is passed to the tainting routine copy from user at
line 6. The second pass checks all uses of tainted point-
ers and ags all raw dereferences of them or any call
to a routine that could do a dereference. In the exam-
ple, the call to parse qos at line 10 is agged because
the tainted pointer buff is passed to the dereferencing
routine parse qos.

Note that this is a good example of how our in-
ference approach can meld gracefully with programmer
annotations. Since we use text �les for summaries, an-
notations for which pointers are user pointers can easily
be added to the �le manually, or extracted from source
annotations and inserted.

False positives. The largest source of false posi-
tives are kernel backdoors that check if they were called
from user code or kernel code. In the latter case, they
can safely dereference pointers, but such uses would be
agged by a naive checker. Fortunately, this is such a
dangerous activity that kernel programmers used styl-
ized naming conventions for the Boolean ags used to
determine what context they are operating in. Both
OpenBSD and Linux use variables named from user or
to user. Our extension treats these variables as im-
plicit speci�cations and tells xgcc's dataow framework
that they always evaluate to true so that the backdoor
path is pruned away.

While not obvious, our other main technique for
suppressing false positives is the list of dereferencing
functions. The most natural checker would simply warn
when a tainted value was passed as a function param-
eter, rather than checking if the call actually derefer-
enced the value. Unfortunately, the prevalence of type
coercion would cause too many false positives. Device
code commonly uses a value as a pointer value on one
path, but as an integer on the other. In a naive checker,
the �rst path would cause the value to be tainted, and
then the second path would cause an error message if
it called a function with the tainted value, even if that
function used the value as an integer.

Manual labor. The checker is mostly system in-
dependent. There are three system-speci�c parts:

1. A text �le listing the paranoid routines. There are
four of these routines for BSD, 28 for Linux.

2. A text �le listing tainting or dereferencing routines
that should be ignored. These suppress false pos-
itives caused by the limitations of the system we
use for static analysis and are independent of our
deriving approach. There are 15 of these functions
for BSD, 19 for Linux.

3. A list of variables names (these can be substrings)
that indicate kernel backdoors. Some form of an-
notation would be needed by any system; we ex-
pect that leveraging the source as we do reduces

OS Errors False Applied

OpenBSD 2.8 18 3 1645
Linux 2.4.1 12 (3) 16 (1) 4905
Linux 2.3.99 5 n/a n/a

Table 4: The user-pointer checker found 35 bugs in to-
tal. It had 19 false positives and was applied roughly
6500 times in Linux 2.4.1 and OpenBSD 2.8. The num-
bers for Linux 2.3.99 are not available since we used an
earlier version of the system. The numbers in parenthe-
ses for the 2.4.1 kernel were the errors and false posi-
tives from cross-checking functions assigned to the same
function pointer.

this e�ort to be roughly as small as it can reason-
ably be.

Applying the checker on a new system typically follows
three stages. First, the tainting routines are speci�ed
and the checker is run over the system. Second, the
results are ranked and inspected. If a given function
causes too many false positives, it is added to the list
of ignored routines and all related errors are skipped.
Similarly, false positives from kernel backdoors cause us
to add the ag to the extension's list and skip related
errors. Finally, we rerun the checker; the system will
re-mark errors that were already inspected.

7.3 The results

Table 4 lists how many bugs we found, the number of
false positives, and how often the check was applied.
All bugs have led to subsequent kernel patches. The
false positive ratio is fairly low. However, given the
seriousness of these bugs, a much higher rate would still
have been acceptable.

In Linux, device drivers account for all but one
error. The bulk of these errors were concentrated in
\ioctl" calls. Bugs also tend to cluster, where assump-
tions that led to one mistake avalanche into several. The
worst example of this was code in the \appletalk" ioctl
routine which had four errors all with the same pattern
of calling copy to user to safely copy out a user pointer
rt while simultaneously calling another function, that
would promptly dereference it. A representative exam-
ple is:
/* drivers/net/appletalk/ipddp.c:ipddp_ioctl */
case SIOCFINDIPDDPRT:
if(copy_to_user(rt, ipddp_find_route(rt),

sizeof(struct ipddp_route)))
return -EFAULT;

Here, our analysis would taint rt because it is passed
to a copy to user call and then warn about the call
ipddp find route(rt), which dereferences it.

In OpenBSD the bulk of the errors were in the \Sys-
tem 4" compatibility layer. Most of these were due to
simply reversing the arguments to the paranoid func-
tions copyin and copyout. This error was faithfully
replicated into several di�erent places. Interestingly, in
each of these places, code immediately above the errors
handles the parameter passing correctly! Similar argu-
ment reversal bugs had been caught in Linux 2.3.99.

Cross-checking functions assigned to the same func-
tion pointer found three errors in 2.4.1 and one false



positive. (We did not do this analysis on the other sys-
tems). Two errors came from improper implementa-
tions of routines assigned to the \write" method �eld
in the file operations structure; 55 of the routines
assigned to this pointer treated their second parame-
ter as tainted, but two buggy routines, fop write and
mdc800 device write dereferenced this pointer directly.
For example:

/* 2.4.1: fop_write:sbc60xxwdt.c: buf is tainted. */
size_t fop_write(struct file *file, const char *buf...)
...

/* now scan */
for(ofs = 0; ofs != count; ofs++)

if(buf[ofs] == 'V')
wdt_expect_close = 1;

Amusingly, as in Section 7.2, the author uses the const
quali�er for type safety while busily compromising sys-
tem security. Although we expected to �nd more bugs
by using function pointer equivalence, the small bug
counts are reassuring: they imply most call chains treat
a pointer correctly in at least one place, allowing us to
check the entire call chain.

8 Inferring Failure

This section �nds errors where routines are not checked
or are incorrectly checked for failure. It uses statistical
analysis to derive and check slot instances for the rule
template \function <f> must be checked for failure."
As we demonstrate, basing this analysis on client beliefs
allows us to �nd restrictions indirectly represented in
source code. As a result, we can �nd completely unan-
ticipated errors that traditional analysis would miss.

8.1 The problem

Kernel code must check for failure at every resource ex-
haustion or access control point. The enormous number
of such cases makes missing checks common. For exam-
ple, our previous static analysis found 79 cases where
Linux kernel code did not check the result of four mem-
ory allocation procedures; a similar analysis of one al-
locator in OpenBSD found 49 cases [9]. Any of these
could lead to segmentation faults when allocation failed
under high load.

Non-memory allocation functions can also fail. Such
failures are frequently silent, making themworse in some
ways than kernel crashes. As an example, a colleague
recently wasted several days tracking a bug hidden by
a single missing check in a graphics device driver that
should have signaled that the driver could not allocate a
range of device memory [16]. The e�ect (failure to dis-
play graphics) is what one would assume happens when
a new card was miscon�gured not, as in this case, a bug
in a dauntingly opaque driver.

A traditional approach to �nding all routines that
could fail would be to compute the transitive closure
of all routines that could return null pointers or error
codes. In practice, this has two limitations. First, while
easy when such values are returned directly, it becomes
undecidably diÆcult when variables are returned. For
example, in the C code \return foo!bar;" the �eld
bar in structure foo may or may not have a null value
because it was never explicitly set or cleared. From the
program text we cannot tell. Second, this type of anal-
ysis can give a uselessly high number of false positives,
since many routines cannot fail if pre-conditions are met

Version Bug False

2.4.1 52 + 102 16
OpenBSD 27 + 14 21
Total 195 37

Table 5: Errors and false positives of running the de-
rived null checker on Linux 2.4.1 and OpenBSD 2.8.
The bugs are in a+b format where a are errors from de-
rived functions previously known to return NULL (e.g.,
kmalloc), and b are errors from functions we did not
know about. The OpenBSD results are for an older
version of our checking system; the newer version gives
5-10 times lower false positive rates for this checker.
Note that we already checked earlier versions of these
OSes [9] and submitted bug reports. As a result, devel-
opers had �xed many of the easy cases.

(e.g., searching a list) or their failure may be outside of
a program's fault model.

We use a more robust approach by deriving what
routines programmers believe can plausibly fail. Miss-
ing checks on almost-always checked routines are good
candidates for errors. Similarly, checks on almost-never
checked routines frequently signal misunderstood inter-
faces.

8.2 The checkers

We wrote two checkers based on this model. The �rst
ensures that routines returning null pointers are checked
before use. The second ensures that routines that return
integer error codes are checked. Both work as follows:

1. They assume that all functions can fail.

2. If the result of a function f is ignored or used with-
out checks, the checker emits an error message.

3. If the result of a function f is checked before use
the checker emits a \checked" message. If f has a
high ratio of check to error messages, this implies
that the client believes such checks are necessary.

After going over the entire system, the checker counts
for each function f both the total number of errors
messages (f:err) and the total number of checked uses
(f:chk). It uses these counts to rank error messages via
z(f:err + f:chk; f:chk): errors for functions that have
a high value for z are put above those with lower val-
ues. Thus, the highest ranked errors will be those for
almost-always checked functions, and hence have the
most probability of being real errors. Table 5 lists the
number of null errors our checker found.

Note that we use statistical ranking because the be-
liefs we can infer above are actually MAY beliefs. We
cannot tell if a unchecked call to f means (1) the pro-
grammer believes f does not need to be checked or (2)
they believe f does not need to be checked at this par-
ticular callsite. In this case, examining many callsites
allows us to (probablistically) generalize beliefs.

8.3 The worst error

We have hand-examined in excess of a thousand errors
of various types. The following error in Linux version
\2.4.0-test9" was one of the worst we have seen. It



would be missed by traditional null pointer analysis
but, interestingly, the checker automatically found it,
even though it was not a type of error we had thought
of. The error started with the following confusing false
positive, where the checker emitted a message stating
that the unchecked pointer shp was being used:

/* ipc/shm.c:map_zero_setup */
if (IS_ERR(shp = seg_alloc(...)))

return PTR_ERR(shp);

The false positive is caused by a very sleazy error re-
turn convention. The routine seg alloc returns a valid
pointer on success, but on failure, rather than return a
null pointer, casts one of several integer error codes to a
pointer and returns that (e.g., essentially doing \return
(void *)-ENOMEM;"). Callers must then check the re-
turned pointer for errors using the special call, IS ERR
(as this caller does), which reverses the cast and com-
pares the value to a negative integer. The key point
is that on failure seg alloc returns a non-null, bogus
pointer. So, if this is true, why is our null checker look-
ing for it at all? Somewhere at least one of seg alloc's
callers must have (understandably) forgotten about this
idiom and checked the function's return against null! In-
deed, searching the deriver log turned up the following
routine:

/* 2.4.0-test9:ipc/shm.c:newseg
NOTE: checking 'seg_alloc' */

if (!(shp = seg_alloc(...)))
return -ENOMEM;

id = shm_addid(shp);

So what happens when seg alloc fails? In this case,
the null pointer check on shp will fail, and newseg will
call the routine shm addid with the mangled pointer shp
as its argument. This pointer is then passed to another
routine, ipc addid, as the parameter \new", where two
catastrophic things happen:

int ipc_addid(..., struct kern_ipc_perm* new)
new->cuid = new->uid = current->euid;
new->gid = new->cgid = current->egid;
ids->entries[id].p = new;

First, the routine writes to the bogus memory location
pointed to by new. Since the error bits will likely form
a valid physical address, the writes to new will corrupt
physical memory. Second, the entry is placed on an
array of structures (later to be used) almost guarantee-
ing that this corruption will re-occur on a sporadic but
continuous basis. Traditional null-pointer error check-
ing would be completely oblivious to cases such as this,
while it can be detected fairly easily by just examining
inconsistencies in how callers handle function returns.

IS ERR consistency checking. Not uncommonly,
one type of error leads us to another. For the error
above, an obvious secondary check is to verify that all
routines that use a similar error-pointer \trick" are cor-
rectly handled by all callers. We use a two-pass consis-
tency checker that enforced the restriction: If a function
f 's return value is ever checked using IS ERR, then all
callers of f must check its result this way. There were 78
such functions in the 2.4.1 kernel. While we did not �nd
any bugs like the seg alloc case above, we did �nd the
opposite problem, where the code did an IS ERR check
on a function that actually returned NULL. This check
will always fail, causing the client to think there was
no error and that they can dereference the null pointer.
Out of 295 checked call sites, there were �ve such errors
and six false positives (caused by unusual coding styles).
All caught errors were �xed.

8.4 Discussion

A nice feature of this analysis style is that it �nds addi-
tional, unforeseen types of errors. The IS ERR checking
idiom is one such example | we never imagined such
a bizarre error type, did not know to look for it, and
when shown, did not initially understand what was go-
ing on. It seems unlikely to have been picked up with
traditional, generic null-pointer analysis. We only �nd
it because of the way we derive failing routines.

Misunderstood interface uses are another unantic-
ipated error type that the approach found. For the
checkers in this section, this manifests as routines that
cannot fail but are spuriously checked by callers. We
have found examples of this in all systems we have
looked at. In one commercial system, there was a rou-
tine, GetFrame, that showed up as a mixed function in
our analysis. When examined, it turned out to never re-
turn and so could not fail. Despite this there were four
places that checked for failure. These checks implicitly
showed the callers did not realize the routine would not
return and thus assumed the code after these calls would
be run. What had happened was that: (1) an initial ver-
sion of the routine could fail, (2) code had been written
that way, (3) the interface had changed, but the code
had not been updated, and so (4) subsequent code used
the initial failure checks as the correct way to treat it.
A similar case shows up in OpenBSD with the getblk
function, which cannot fail but is treated that way by
clients. These checks are a nice way of agging code
written by programmers that (most likely) have a poor
grasp of internal interfaces and whose code should be
audited. The basic approach of �nding deviant inter-
faces could be extended to richer examples.

In summary, this type of analysis serves as a good
supplement to a more traditional compiler analysis ap-
proach. In a sense, it checks at the level of an abstract
interface by viewing how clients treat a routine rather
than by only examining its implementation. A possi-
ble future direction would be to use this approach to
catch when an implementation violates its speci�cation
by checking for implementation actions that contradict
client assumptions (e.g., a return of null when clients do
not check).

9 Deriving Temporal Rules

Another type of error our approach can �nd are viola-
tions of temporal rules, where sequences of actions need
to be considered. Some examples of temporal rules are
\no <a> after <b>" (freed memory cannot be used),
\<b> must follow <a>" (unlock must follow lock), and
contextual rules such as \in context <x>, do <b> after
<a>" (on error paths, reverse side-e�ects). While there
are a small number of such templates, there are many
di�erent speci�c operations that can �t in them.

In this section, we look at two temporal-rule tem-
plates. The �rst checks the \no <a> after <b>" rule
above by agging cases where memory is used after be-
ing passed to a potential deallocation function. The
second analysis checks the rule \<b> must follow <a>"
by pre-processing the code to build up traces of related
function calls on local program paths, which are then
examined to �nd sequences of operations that �t this
rule. Good �ts are kept, bad �ts discarded.



9.1 \No <a> after <b>": deallocation
This rule checks that freed memory is not used. How-
ever, �nding all rule violations is diÆcult because many
systems have a large set of deallocation functions, rang-
ing from general-purpose routines, to wrappers around
these routines, to a variety of ad hoc routines that man-
age their own internal free lists. This section describes
a checker that can infer all such routine types.

The checker exploits a single, simple implication: if
a function's argument is not used after the call, we can
infer that the programmer may believe that this is a
deallocation function. Since this is a MAY belief, we
use the following three-step statistical process to �nd
likely violations:

1. Blindly assume that every function frees all of its
arguments.

2. For every function-argument pair, count: (1) n,
the number of times we check the pair, and (2)
err, the number of times the pair failed the check.

3. Segregate errors by pair, and use the z statistic to
rank each pair by how often the pair was checked
(n) versus how often it failed (err) (i.e., z(n; n �
err)). This pushes the errors from the most likely
pairs to the top of the list.

Unsurprisingly, checking all argument pairs is too com-
putationally expensive in practice. We reduce this over-
head by using latent speci�cation to automatically �lter
the population of candidate functions to contain only
those that have names suggestive of deallocation (con-
taining the substring \free," \dealloc," etc.).

We applied this process to the 2.4.1 Linux kernel
and inspected the top 14 ranked functions. There were
23 free errors, 14 of which would have been missed by
our previous work. There were 11 false positives in total.
Figure 4 shows one interesting example of a double-free
that would not be caught by the old system. Here, if
the second call to copy to user fails, the code carefully
frees both c and buff and then (possibly because of
a missing return) frees both variables again. This bug
is particularly bad because it opens a security hole for
users: they can trigger this path deterministically by
calling the code with invalid pointers (which will cause
copy to user to fail).

A second disastrous bug that frees memory but then
allows it to escape occurs in this routine from the \proc"
�le system code:

/* fs/proc/generic.c:proc_symlink */
ent->data = kmalloc(...);
if (!ent->data) {

kfree(ent);
goto out;

}
out:
return ent;

If the allocation fails, then the routine will free the data
pointed to by ent, but, instead of returning null, re-
turn ent. Callers checking for failure will get a non-null
pointer, assume the routine succeeded, and then use
this pointer. Of the remaining errors, the most exuber-
ant was a single use-after-free error that an implementer
carefully cut and paste to seven di�erent locations.

/* drivers/block/cciss.c:cciss_ioctl */
if (copy_to_user(...)) {

cmd_free(NULL, c);
if (buff != NULL) kfree(buff);
return( -EFAULT);

}
if (iocommand.Direction == XFER_READ)

if (copy_to_user(...)) {
cmd_free(NULL, c);
kfree(buff);

}
cmd_free(NULL, c);
if (buff != NULL) kfree(buff);

Figure 4: Double-free security hole: the �rst
copy to user correctly deallocates its storage and re-
turns with an error. The second appears to have omit-
ted a return statement, thus allowing the code to fall
through and hit a duplicate free of both c and buff.

9.2 \<b> must follow <a>"
In this subsection, we �nd errors with the temporal tem-
plate \<b> must follow <a>." A function, a, followed
by b implies the MAY belief that a must always be fol-
lowed b. This belief is not a MUST belief because such
pairings can also be coincidental. Intuitively, we can de-
termine if this pairing is real or spurious by comparing
the number of code paths with a call to a to the num-
ber of paths with the pair of calls a, b. Non-spurious
couplings will have near-equal counts (errors make them
slightly di�erent).

Conceptually, the checker for this rule is almost
identical to the deallocation checker in the previous sub-
section. We blindly assume that all possible function
pairs must obey the rule. Then, for each a-b pair we
count (1) n, the number of times we check the pair, and
(2) err, the number of times the pair failed the check.
We can then rank the pairs using the z statistic (i.e.,
z(n; n� err)).

In practice, we need to make two modi�cations.
First, to control the overwhelming number of pairwise
combinations, we �rst pre-process all possible paths to
get plausible a-b pairs. Second, to reduce the inspected
number of false positives, we use the z statistic to rank
error messages both by pair plausibility as well as by
individual error message. We discuss each modi�cation
below.

Selecting plausible a-b pairs. We reduce the
number of possible pairwise combinations by automat-
ically extracting \traces" from the source code, culling
out plausible a-b pairs, and then feeding these to the
checker. We only consider three idiomatic types of func-
tion traces:

/* type 1 */ /* type 2 */ /* type 3 */
p = foo(...); foo(p, ...); foo();
bar(p); bar(p, ...); bar();
baz(p); baz(p, ...); baz();

Type 1 traces begin when the result of a function is
assigned to a variable that is then passed as the �rst
argument to more than one subsequent call. This can
happen when a handle is returned, used in some num-
ber of calls and then (possibly) released. The trace for
this example would be \foo:bar:baz." Type 2 traces
begin with the variable passed without an initial assign-
ment. In Figure 5, the call to \spin lock irqsave" fol-
lowed \spin unlock irqrestore" would lead to a type



2 trace. The third is a series of no-argument function
calls. In Figure 5, the paired calls \lock kernel and
\unlock kernel" would generate a type 3 trace. Using
these idioms to �lter the pairs makes the analysis man-
ageable yet e�ective because they cover a wide set of
uses.

We generate (a; b) pairs in three steps. First, we run
the trace extractor over the kernel. The result is a �le
containing each unique trace; as an order-of-magnitude,
the 2.4.1 kernel generates roughly 130K such traces.
Second, we post-process the traces using the z statistic
to select plausible a-b pairs, using latent speci�cations
to increase the weight of functions that have names sug-
gestive of paired functions (the substrings \lock," \un-
lock," \acquire," \release," \brelse," \spl," etc.). Fi-
nally, we feed the selected functions to an implementa-
tion of the checker sketched above.

Hierarchical ranking. The classic error for this
rule is many paths with a correctly followed by b, and
only one or two paths without it. The classic false pos-
itive is a single use of a and no use of b. Such false
positives typically happen when the local analysis we
use to check a-b pairs encounters a wrapper routines
that never pair a and b. For example, a locking wrap-
per function will acquire a lock, but not release it. We
want to rank error messages that �t the �rst idiom over
errors that �t the second. We do this by computing an
additional z statistic to rank the errors within a sin-
gle checked function based on (1) the number of paths
within that function that contain a given a-b pair ver-
sus (2) the number of paths that only contain a. Using
this additional ranking for a given a-b pair pushes the
most likely errors to the top. Importantly, the functions
at the top of the list not only are most likely to contain
errors, but are also likely to contain the best examples
of where the programmer conscientiously attempted to
pair them; these examples can help us determine if a
given a-b pair is valid.

Thus, errors are binned according to their a-b pair,
with the bins sorted by the pair's plausibility. Within
each bin, errors are then sorted by their individual error
plausibility. We inspect errors by starting at the top of
this list. For each a-b pair, we test the validity of the
�rst error. If it is valid, we continue inspecting errors in
that bin until the false positive rate is \too high." We
then skip to the next a-b pair. We continue this process
until the number of bogus a-b pairs is also deemed \too
high," at which point we stop.

Results. When we applied this checker to the Linux
2.4.1 kernel, we found 23 errors, 14 of which involved
functions we had not checked in prior work, and 11 false
positives.

The simplest error (and one of the most insidious
errors we have seen) was in the \trident" sound driver
where the global kernel lock was acquired by the call to
\lock kernel," but not released on an error path con-
tained within a subsequent macro (\VALIDATE STATE"):

drivers/sound/trident.c:trident_release:
lock_kernel();
card = state->card;
dmabuf = &state->dmabuf;
VALIDATE_STATE(state);

All errors were similar cases where functions were not
reversed on error paths. Unusually, many of these er-
rors were in core �le system code rather than in drivers.

/* drivers/sound/esssolo1.c:solo1_midi_release */
static int solo1_midi_release(...) {

...
lock_kernel();
if (file->f_mode & FMODE_WRITE) {

add_wait_queue(&s->midi.owait, &wait);
for (;;) {

__set_current_state(TASK_INTERRUPTIBLE);
spin_lock_irqsave(&s->lock, flags);
count = s->midi.ocnt;
spin_unlock_irqrestore(&s->lock, flags);
...
if (file->f_flags & O_NONBLOCK) {

remove_wait_queue(...);
set_current_state(TASK_RUNNING);
/* did not release lock! */
return -EBUSY;

}
...
unlock_kernel();
return 0;

Figure 5: Code that acquires the global kernel lock,
but does not release it on its error path, though it does
properly roll back a number of other operations. This
identical error was cut and paste into a total of �ve
device drivers.

One example happened in the ufs �le system code that
acquired a lock on the �le system super block (sb) using
the function lock super, but did not release it on an er-
ror path. (This error survived until we sent a bug report
two days before this paper was originally submitted.)

Figure 5 gives one of the more complex errors, which
acquires the master kernel lock using lock kernel, but
while it rolls back a number of other operations on its
error path, forgets to release this lock. This error was
faithfully copied into four other device drivers.

9.3 Future Work

We are currently using machine learning techniques to
automatically generate temporal rules and rule tem-
plates directly from source code. Instead of performing
statistical analysis on traces, we form a general model
of actions and control ow using probabilistic automata
(hiddenMarkov models and stochastic context-free gram-
mars) with probabilities initialized from static branch
prediction. Initial results lead us to believe that this
will be a pro�table approach.

10 Conclusion

This paper shows how to automatically �nd bugs in a
system without having a priori knowledge of the correct-
ness rules the system must obey. We use simple static
analyses to automatically extract programmer beliefs
from the source code, and we ag belief contradictions
as errors. The key bene�t of this approach is that it
eliminates the need to understand the system in any
deep way | we know that a contradicted belief must
be an error, without having to know what the actual be-
lief should be.

This approach is a signi�cant improvement over our
prior work that manually speci�ed rules to check. We
now specify a general template for a rule, and allow
the automatic analysis to specialize the template to the
checked system. This technique drastically decreases
the manual labor required to re-target our analyses to



a new system, and it enables us to check rules that we
had formerly found impractical.

We present two general techniques for implement-
ing these deriving analyses, and we discuss a framework
and terminology for describing them. Our �rst tech-
nique, internal consistency, �nds errors where program-
mers have violated beliefs that we know they must hold.
Our second technique, statistical analysis, extracts be-
liefs from a much noisier sample where the extracted
beliefs can be either valid or coincidental.

Finally, we have shown that this approach works
well on real systems code. We presented six template
checkers that found hundreds of errors in recent snap-
shots of the Linux and OpenBSD operating systems.
Many of these errors resulted in kernel patches.
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